
Momentum and Angular Momentum of the Electromagnetic Fields 

We have found out that the magnetic forces between two charged particles do not 

necessarily fulfill the third law of Newton that force equals the counterforce. However, 

any moving charged particle is accompanied by the electric and magnetic field it 

produces and thus this discrepancy is caused by the fact that we must attribute 

momentum also to the fields.  

To derive an expression for the momentum carried by the fields, we start with the 

force law. Consider an arbitrary volume V with boundary S, filled with a certain 

charge distribution. The total force on all the charges is 

𝐅 = ∫ (E + v × B)𝜌𝑑𝜏
𝑽

= ∫ (𝜌E + J × B)𝑑𝜏 
𝑽

 

If we consider instead the force per unit volume we eliminate the volume integral 

𝐟 =  𝜌E + J × B 

What we want is an expression which depends only on the E and B fields and not the 

sources. Therefore we are using Gauss’ law and Ampere-Mawell’s law to eliminate  

and J.  

𝐟 = 𝜀0(𝛁𝐄)𝐄 + (
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𝜇0
∇ × B − 𝜀0

𝜕𝐄

𝜕𝑡
) × 𝐁 

With 

𝜕

𝜕𝑡
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× 𝐁) + (𝐄 ×

𝜕𝐁
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and  

𝜕𝐁

𝜕𝑡
= −∇ × 𝐄 

we obtain  

𝜕𝐄

𝜕𝑡
× 𝐁 =

𝜕

𝜕𝑡
(𝐄 × 𝐁) + 𝐄 × (∇ × 𝐄) 

Inserting this back into the expression for the force per unit volume, we obtain 

𝐟 =  𝝐𝟎[(𝛁𝐄)𝐄 − 𝐄 × (𝛁 × 𝐄)] +
𝟏

𝝁𝟎

[(𝛁𝐁)𝐁 − 𝐁 × (𝛁 × 𝐁)] − 𝝐𝟎

𝝏

𝝏𝒕
(𝐄 × 𝐁) 

Here we have added the term (∇B)B , which does not change anything as the 

divergence of B is zero anyway, in order to make this expression more symmetric 

with respect to the E and B field.  

With the product rule 

∇(𝐸2) = 2(𝐄 ∙ ∇)𝐄 + 2𝐄 × (∇ × 𝐄) 

𝐄 × (∇ × 𝐄) =
1

2
∇(𝐸2) − (𝐄 ∙ ∇)𝐄 

and the same procedure applies for the B field.  



∇(𝐵2) = 2(𝐁 ∙ ∇)𝐁 + 2𝐁 × (∇ × 𝐁) 

𝐁 × (∇ × 𝐁) =
1

2
∇(𝐵2) − (𝐁 ∙ ∇)𝐁 

We obtain 

𝐟 =  𝜖0[(𝛁𝐄)𝐄 + (𝐄 ∙ ∇)𝐄] +
1

𝜇0

[(𝛁𝐁)𝐁 + (𝐁 ∙ ∇)𝐁]

−
1

2
𝛁 (𝝐𝟎𝐸2 +

𝟏

𝝁𝟎
𝐵2) −𝜖0

𝜕

𝜕𝑡
(𝐄 × 𝐁) 

This expression looks very complicated, however we can express the first 3 terms as a 

tensor (Maxwell stress tensor). The last term can be expressed in terms of the 

Poynting vector −𝜖0𝜇0
𝝏𝐒

𝝏𝒕
 . 

Let’s look a bit closer on the Maxwell stress tensor. 

We define it as  

𝑇𝒊𝒋 = 𝜖0 [𝐸𝑖𝐸𝑗 −
1

2
𝛿𝑖𝑗𝐸

2] +
1

𝜇0
[𝐵𝑖𝐵𝑗 −

1

2
𝛿𝑖𝑗𝐵

2] 

i and j are the coordinates x, y and z and thus the tensor has 9 components.  

The diagonal elements are e.g.: 

𝑇𝑥𝑥 = 
1

2
𝜖0[𝐸𝑥

2 − 𝐸𝑦
2 − 𝐸𝑧

2] +
1

2𝜇0
[𝐵𝑥

2 − 𝐵𝑦
2 − 𝐵𝑧

2] 

And the off-diagonal elements e.g.: 

𝑇𝑥𝑦 = 𝜖0[𝐸𝑥 𝐸𝑦 ] +
1

2𝜇0
[𝐵𝑥 𝐵𝑦 ] 

The jth component of the divergence of 𝑻⃡  is: 

(∇ ∙ 𝑻 ⃡   ) =  𝜖0 [(𝛁𝐄)𝐸𝑗 − (𝐄 ∙ ∇)𝐸𝑗 −
1

2
𝛁𝑗𝐸

2] +
1

𝜇0
[(𝛁𝐁)𝐵𝑗 − (𝐁 ∙ ∇)𝐵𝑗 −

1

2
𝛁𝑗𝐵

2] 

 

With the stress tensor we can write the force per unit volume in the very compact 

form 

𝐟 =  𝛁𝑻⃡ −𝜖0𝜇0

𝜕𝐒

𝝏𝒕
 

The total electromagnetic force on all charges in the volume V is then 

𝐅 =  ∫ 𝛁𝑻⃡ 
𝑽

𝑑𝜏 − ∫ 𝜖0
𝑉

𝜇0

𝜕𝐒

𝜕𝑡
𝑑𝜏 = ∫ 𝑻⃡ 

𝑺

𝒅𝐚 − ∫ 𝜖0
𝑉

𝜇0

𝜕𝐒

𝜕𝑡
𝑑𝜏 

In the static case, the second term is evidently zero. The stress tensor is the force or 

stress per unit area acting on the surface of our volume, generated by the electric and 

magnetic fields. Diagonal elements represent pressures and off diagonal elements 

represent shear forces. This tensor represents thus the ‘mechanical’ properties of this 



volume due to the presence of electrical fields. This is analogous to the elastic 

properties to a solid material, which is described by a similar tensor containing the 

elastic constants of the material along the different directions in the solid.  

 

To understand the significance of the second term, let’s calculate the momentum from 

the force. The force on an object is equal to the rate of change of its momentum. Let 

pmech be the total mechanical momentum of the charges contained in our volume.  

𝐅 =
𝑑𝒑𝒎𝒆𝒄𝒉

𝑑𝑡
 

𝑑𝒑𝒎𝒆𝒄𝒉

𝑑𝑡
=  −𝜖0𝜇0

𝜕

𝜕𝑡
∫ 𝐒

𝑽

𝑑𝜏 + ∫ 𝑻⃡ 
𝑺

𝑑𝐚 

The first term is therefore the momentum stored in the electromagnetic fields pem. 

Any increase of the momentum must flow in through the surface  

To derive an expression which is independent of the chosen volume of our charge 

configuration we can define the density of momentum in the fields.   

p
𝑒𝑚

= 𝜖0𝜇0𝐒 

With this we can obtain the following equation which represents the continuity 

equation for the momentum and thus the law of conservation of momentum 

𝑑

𝑑𝑡
=  (p

𝑚𝑒𝑐ℎ
+ p

𝑒𝑚
) = 𝛁𝑻⃡  

−𝑻⃡  is the momentum flux density, which plays the role of the current density J.  

From this we can define also an angular momentum density. The Poynting vector S is 

the energy per unit area, per unit time which is transported by the electromagnetic 

fields, while 00S is the momentum per unit volume stored in the fields. The stress 

tensor 𝑻⃡  is the electromagnetic stress of force per unit area acting on a surface of a 

volume, while −𝑻⃡  describes the flow of momentum or momentum current density 

transported by the fields.  

The fields thus carry energy 

u𝑒𝑚 =
1

2
(𝜖0𝐸2 +

1

𝜇0
𝐵2), 

momentum  

p
𝑒𝑚

= 𝜖0𝜇0𝐒 = 𝜖0(𝐄 × 𝐁), 

and even angular momentum 

l𝑒𝑚 =  𝐫 × p
𝑒𝑚

= 𝜖0(𝐫 × 𝐄 × 𝐁) 

This is even true for static fields, as long as E x B is nonzero. 


