Solving Laplace’s Equation
Inside Matter

* Inside matter, we still have VxE=0

* Hence the electric potential V is still well-
defined.

 However, the Poisson’s equation now
becomes

V-Ezi(pf —V-P):>V2V z_i(pf _V.p)
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* P must be given in order for one to solve E

* For example, for “frozen-in” polarization,
the exact form of P may be given, or the
relation of P to E (called the constitutive
equation) should be given.



* Again, to avoid solving the Poisson’s
equation inside a region, we shall only

consider systems in which the right hand
side of

VA =—i(pf ~V-P)
€o
IS zero except on some very thin layers

 For this to hold, obviously we need to
assume p: =0

* Hence we shall only consider systems with
no volume free charge.



In addition, we also need to have
V-P=0

This holds under two situations:

When we have uniform “frozen-in”
polarization.

When the media are linear dielectrics, then
pr=0-2p,=0.



* Under these conditions, we only need to
solve the Laplace’s equation in different

regions.

* Across boundaries, the differentials
equations VXE=0 and v-E==(p,-V-P)

&y

are transformed to their integral forms to
obtain the boundary conditions
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Example:

A sphere of linear dielectric material is placed in an originally
uniform electric field E . Find the new field inside the sphere.
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Solution:

We know thatV — —E,rcosé as r — o

Since there are no free charges,
V-D=0

both inside and outside the sphere: | ‘90

EO

. [V-(¢E)=0 forr<R
V-(gE)=0 forr>R

S.V-E=0
both inside and outside the sphere




Solution:

V-E=0
~VV =0

V

out

Therefore (r,0)= —EOrCOS¢9+Z% P (cos 6)

=

Vin(r,e):iB,r'P,(cosH)

.

(Note that A, = 0 since there is no net charge)



The boundary conditions are:

1)V, (R,0)=V,, (R,0)
l.e. 00 A 00
~E,Rcos0+ ) i R (cosd) => BR'P(cosd)
= =0
B, =0
3 Blz—Eo+ﬁ3
B, = | =2,3,4,..
R +1




The boundary conditions are:

2) The normal component of D being continuous at R implies

aVout aVin
&, =g
or |, or |,
l.e.
— By 080 -5, ) (1 +1) Rﬁz P, (cos#) = &) _IB,R"™P,(cos 6)
= =
26,7
£B, = —&,E, - 0N
< | +1 ’
£B, =—s, |+ Rle 1=2,3,4,..




Forl=1,
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A
Blz_EO+R_éL%
2. A
eB, =—¢,E, ngl
,Al: g_go E R3
£+ 2¢,
3&
Blz— O E




Forl=234,...

In conclusion,

A
B| = R2|+l
<
|+1 A
gB| = —& I R2|+1
= A =B, =0
8_80 3
= E R
A &+ 2¢, ’
B = 3&, £,
&+ 2¢,

A=B =0

for1=0,2,3/4,...



Therefore, |

Vin (1,0) =— at E,rcosé

&+2¢,
J
Vout(rig):_EorCOSQ—l— &~ & EOR3 COSZH
- 8+280 r
So,
3¢ i e
Em = _vvin — 0 E 5 — 0 EO




V. (1.0) =g rcoso

) &+ 2¢g,
VOUt(r’e):_EorCOSQ—I— &€~ % EOR3 COS;@
&+2¢, r
- P gOZe — (8 EO)E E = go (1_|_ Ze)
P = 380(8_50) EO
£+ 2¢g,
MRS = 4 Dol o) E =p
3 €+2¢,

V out 1S equivalent to that due to the external field E and a
s & (e—&,) -
&+2¢,

dipole p=47R o at the center.



£—&, cosé p-r

V. =—E,rcosd+ E,R’——=-E,rcosd+

out — 5

&+ 2¢, r Arigy T

= External field potential
+ potential due to a pure dipole p at the center.

1

=E, _gp = External field + Field due to P
0



There are no volume bound charges since

The surface bound charge density is
Gb — P ° ,r\‘
_ 35, (e—¢,)

E,cosd
&+2¢,






