
Solving Laplace’s Equation 

inside Matter 

• Inside matter, we still have 

• Hence the electric potential V is still well-

defined. 

• However, the Poisson’s equation now 

becomes 
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• P must be given in order for one to solve E 

• For example, for “frozen-in” polarization, 

the exact form of P may be given, or the 

relation of P to E (called the constitutive 

equation) should be given.  



• Again, to avoid solving the Poisson’s 
equation inside a region, we shall only 
consider systems in which the right hand 
side of 

 

  

 is zero except on some very thin layers 

• For this to hold, obviously we need to 
assume f = 0 

• Hence we shall only consider systems with 
no volume free charge. 
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• In addition, we also need to have 

 

 

• This holds under two situations: 

• When we have uniform “frozen-in” 

polarization. 

• When the media are linear dielectrics, then 

f = 0  b = 0. 
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• Under these conditions, we only need to 

solve the Laplace’s equation in different 

regions. 

• Across boundaries, the differentials 

equations                  and 

  

 are transformed to their integral forms to 

obtain the boundary conditions  
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Example:  

A sphere of linear dielectric material is placed in an originally 

uniform electric field  0E . Find the new field inside the sphere.  
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Solution:  
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Since there are no free charges, 

both inside and outside the sphere 

R 

0


0E

both inside and outside the sphere: 
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00 A (Note that            since there is no net charge) 
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The boundary conditions are: 

i.e.  
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The boundary conditions are: 

2) The normal component of D being continuous at R implies  
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For l = 1, 
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For l = 2,3,4,… 

 

In conclusion, 
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Therefore, 

 

So, 
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outV  is equivalent to that due to the external field   and a 

 at the center. dipole  
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p r

= External field potential 

+ potential due to a pure dipole p at the center. 
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= External field + Field due to P  
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There are no volume bound charges since 

The surface bound charge density is 



+ 
+ 

+ 

+ 

+ 

_ 
_ 

_ 

_ 

_ 
P 

0E


