Electrodynamics and the
Maxwell’s equations



Summary:
Electrostatics and Magnetostatics

rV-E =pl&, € Gauss’'Law
VxE=0 <« Noname
V-B=0 < Noname
VxB=puJd € Ampere’s Law




Summary of Chapter 2-6:
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Summary of Chapter 2-6:
Electrostatics and Magnetostatics

For instance, in linear media,

.

(D=¢cE

H=-1B

u

For the set of equations
to be closed,

one has to supply the
relation between D, E
and H, M,

which are called the
constitutive relations.



Summary of Chapter 2-6:

Electrostatics and Magnetostatics

The force a charge g moving with velocity v experiences in a
region of E field and B field is given by the Lorentz force law:

F=q(E+vxB)



Summary of Chapter 2-6:
Electrostatics and Magnetostatics

In the static cases,

the continuity equation Since:
op
1) = =0
(1) p 1
2 V-J==—V-(VxB)=0
Ho

the two curl equations have to
be modified in electrodynamics




Electromagnetic induction
Faraday’s Experiments

* Inthe 19th century, Faraday performed a series of
experiments which showed that in general, the electric

field i1s not curl-free.

Experiment 1.
A loop of wire partly inside a magnetic field (assume uniform for simplicity)

moving with velocity v perpendicular to the field.

Experiment 2:
A magnetic field partly inside a loop of wire moving to the opposite direction.

Experiment 3:
A loop at rest inside a changing magnetic field.



Experiment 1:

* A loop of wire partly inside a magnetic field
(assume uniform for simplicity) moving
with velocity v perpendicular to the field.
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Experiment 2:
* A magnetic field partly inside a loop of wire
moving to the opposite direction.

What can we observe
In this experiment?



Experiment 3:

* A loop at rest inside a changing magnetic
field.

charging B-field............

What Is the conclusion in the 3 experiments?



Observation

 In all the experiments, there will be a current flowing.

« There is a current because there is a force driving the
charges to move.

Let f be the force per unit charge.
The electromotive force (emf) & is defined by

g=§rd|

over a closed loop.



Observation
« There is a current because there Is a force driving the
charges to move.

g:ij-dI

* When there is a driving force, it is a “rule of thumb” that a
current will be generated which is proportional to f:

J =of
conc(;ctivity of the material,

where p = —, Is called the resistivity
o

« The source of this driving force in the Faraday’s
experiments has different interpretations though.



Experiment 1:

* The force Is due to the Lorentz force of charges
In motion - Motional emf.

e o o o  \WVhen the loop moves, the charges
¢ '); ® | inside experience a force
| o, —_
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nly the left side of the loop contributes

to the emf 8=§f~d|



Experiment 1:

* The force Is due to the Lorentz force of charges
In motion - Motional emf.

 Notice that the emf In this case can be related
to the magnetic flux through the loop.

D = I B.da (inwards as positive)

* The sign convention of emf and flux has to be
consistent by right hand rule%



Lo, In this particular case, obviously
cobleees P = Bhx
o :ho ® o oo (where x is the portion of the length of
® opje e o 0 the loop inside the field.)
Hence £ _do
dt
The relation is hence  d@® dx
— =Bh—=—-vBh
dt dt

which is called the flux rule <= valid in general for aloop
moving in a non-uniform B-field



Experiment 2,3:

Imagine an observer in experiment 1 moving with velocity v.

What he will observe is exactly that in experiment 2 there is
a loop at rest with a magnetic field moving to the right.

A current and hence electromotive force will still be
observed.

 there should be no Lorentz force due to magnetic field
since the loop is not moving.

* it can be concluded that there is an electric field



Faraday’s law:

« Faraday proposed that a changing
magnetic field will induce an electric field.

p
The flux rule Is still
correct.

L

—_[B -da= —Sf)E-dI (Faraday's law in integral form)

(However, this time
the driving force Is
due to an induced

Kelectrlc: field.

&S| VxE=———= (Faraday's law in differential form)




Faraday’s law:

OB Note that the minus sign denotes

VxE= T what is called the Lenz’s law :

Nature abhors a change in flux!
A
tve

e.g., Flux increases
- negative Vx E
- negative current
—> produces negative flux
—> opposes the change In flux

t+ve



Faraday’s law:

 The induced electric field forms closed
loops and is divergence free.

 Therefore, the total electric field due to
charges and changing magnetic field
satisfies



Conclusion

V-E=plg, Gauss'law

V-B=0 No name
VxB=pJ Ampere’s law




Maxwell’s Correction

« With the Faraday’s law, the set of equations now reads

V-E=pl¢g,
VxE = oB
< ot
V-B=0
 VxB = ,Jd




Maxwell’s Correction

If you study them carefully, you will realize that something is
wrong!!
« Look at the fourth equation, and take divergence of both

sides:
v.J=1v.(VxB)=0
Ho
 However, from the continuity equation:
v.j-_2°

ot
which is in general non-zero in electrodynamics.



Maxwell’s Correction

 In addition, consider the Ampere’s law in integral form:
gf)B-dl =,11on da= gl
C S

« The current enclosed by C is not well defined since

different choices of S may yield different ..

 This is, of course, also due to the factthat V-J =0
In general.



Maxwell’s Correction

Consider the following set up of charging up a capacitor:

* When the capacitor is being
charged up, a current is
flowing in the direction shown

* Positive and negative charges
are being accumulated on the left
and right plate of the capacitor,
respectively.

(=

1

* In between the plates, the electric field is increasing,

but there is no current.



Maxwell’s Correction

Consider the amperian loop C, which is assumed to be “flat”
for simplicity. If Ampere’s law is applied on the loop, and the
flat surface S is used to calculate | -

one obtains | —

However, if the curved surface S’ is
chosen, which does not intersect with

the wire, then | —0




Maxwell’s Correction

Hence, we know that something is missing on the right
hand side of the Ampere’s law, which, together with £,J,
gives a zero divergence.

Notice that from the continuity equation and Gauss’ law:



Maxwell’s Correctio

The second term is sometimes called the displacement

current: ok
Jy=6y—
ot

Though it is misleading since it has nothing to do with

i ok
flowing charges. 1w, = e, = .
Maxwell proposed that the missing term in the Ampere’s
law Is VxB=ud+ e o OB « Maxwell’s

correction

OE erms
ra @B dl _luo enc+ﬂ050_[ 61: da/ t
nted

form



Maxwell's Correction

By adding this “maxwell’s correction term”, the conservation
of charges is restored.
The ambiguity in the definition of current enclosed is also
solved by including the displacement current.
It turns out that it is the sum of real current and displacement
current that is unchanged no matter what surface one
chooses.
Also note the parallelity between the modified Ampere’s law
and the Faraday’s law,

A changiing magnetic field indueces an electric field

A changing electric field induces a magnetic field



Maxwell’s Correction

Hence there are two sources of magnetic field, viz.,

ok
J and ¢,—

ok

The second contribution &, E IS difficult to observe as

Ho&o =107
which is very small, unless the electric field is changing
very rapidly.
Maxwell derived this term relying solely on mathematics.

It was later verified experimentally by the observation of
electromagnetic waves.



Maxwell’s Equations

The set of four equations now becomes

-

\

V-E=pleg,

V><E:—§§

ot
V-B=0
ok

VXBIIUOJ'FILIOSOE

Gauss' law
Faraday's law

NO name

Ampere’s law with
Maxwell’s correction



Electromagnetic Waves in Vacuum

« The Maxwell’'s equations predict the existence of
electromagnetic waves.

* |n vacuum, the Maxwell's equations read

[ V-E=0
V><E=—Q§
< ot
V-B=0
ok
VxB=ug,  —
k ﬂooat



Electromagnetic Waves in Vacuu

Taking the curl on both sides of the Faraday's law, we have

Vx(VxE)z—%VxB

By the Ampere’s law,

V(V-E)—VZE:—a(,uogo ‘;'fj

ot
O°E

By Gauss’ law

V°E = ttyg, —




Electromagnetic Waves in Vacuum

Similarly, by taking the curl on both sides of the Ampere’s law,

we have VX(VXB):,L!OE()%VXE

By Faraday’s law
o oB

V(V-B)-V°B=—p,6, ——
( ) /Uogoét ot

Since
V-B=0

hence o°B
VZB = IUOEO ?



Electromagnetic Waves in Vacuum

Therefore, both the E field and B field satisfy the wave
equation and admit solution of propagating waves.

cf.  o*f 1 0°f
Ox>  v° Ot?
C =

- speed of EM wave
1

\ Ho&o 1

- \/477 x10"" x8.85x107*
1

- J1.11x107
=3.00x10®ms™




Maxwell’s Equations Inside Matter

 Inside matter, there are in general polarization P
and magnetization M.

 The Gauss’ law and the Ampere’s law can be re-formulated.

* For the Gauss'’ law, the total charge is the sum of free

charges and bound charges:
1
V-E=—(p;+p)  where p,=-VP
0
Hence _
V-D=p; where D=¢gE+P



Maxwell’s Equations Inside Matter

* In magnetostatics, we have also learned that on the
right hand side of the Ampere’s law,

 the total current consists of two contributions, viz., free
currents and bound currents due to magnetization.

* Hence, you may propose that the Ampere’s law

In electrodynamics should be

ok
VxB:,uo(Jf +Jb)+,uogoa

where J, =VxM



Maxwell’'s Equations Inside Matter

« However, in electrodynamics, there is another contribution
to the total current that we missed in the above equation.

« This means that the charges inside the electric dipoles
are moving, giving rise to a current which is called the
polarization current J,

 In electrodynamics, P varies with time in general.



Maxwell’s Equations Inside Matter

Consider a small piece of matter with polarization P, as
shown below: daL

_Gb Gb

We know that there will be surface bound charges at both

ends of density o, =P



Maxwell’s Equations Inside Matter

When P varies, the net effect is that a current dl is flowing
In the direction of P.

The magnitude of the current is

",
di :a(gbdaJ_)

Hence, the volume current density Is

_dlp_Oop_0Pp_ 0P

J =
da, ot ot o




Maxwell’s Equations Inside Matter

Taking into account the polarization current, the Ampere’s
law inside matter should be

ok
VXB:,uo(Jf +Jb+‘Jp)+lu080_at
oP ok

VxB = pyd +ﬂoVXM+ﬂo§+ﬂogoa

VX(iB—M]:Jf _|_a(‘90E+P)
Hy ot

oD
va:Jf+a— where H:iB—M
t Hy



Maxwell’s Equations Inside Matter

The two remaining equations

-

V-B=0
S
VXE=—§§
\ ot

Involve no source and are hence unchanged inside matter.
In conclusion, inside matter:
( V.-D=p,

V><E:—Q§

ot
V-B=0
oD

VxH=J, +—
! ot




Maxwell’s Equations Inside Matter

The equations are providing the constitutive relations, which
relate polarization to the E field and magnetization to the B field.

e.g., forlinearmedia, [ D= ¢E

4
H=18

' H
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* Inside matter with no free L
* |f the medium is linear, then
charges and currents, the .
) ) the equations reduce to
Maxwell’s equations become
([ V-D=0 ([ V-E=0
VxE= _6_B V x E = _@
) ot % ot
V-B=0 V-B=0
ob OE
VxH = — =
| ot ka B = us =t

Notice that these are just the Maxwell’s equations in vacuum under the
transcription ¢, » ¢, y, > u



Electromagnetic Waves in Matter

Hence, the E field and B field satisfy the wave equation
O°E

ot’

0°B

V°B = E—5
' # ot*

VZE UE —

and the speed of light becomes

o1 1 /ﬂgzﬁ
\/7? \ o€ Ho&o N




Electromagnetic Waves in Matter

In other words, the speed of light in matter is reduced by a

factor o [ e
Ho

which iIs called the refractive index.

For most materials, ,and ¢ > ¢,

n:\F:\/E>1
&y

K : dielectric constant
Hence V< C



