
Chapter 5 

Magnetostatics 



History 

• At first, Electricity and Magnetism 

appeared to the separated, unrelated  

subjects 

• Electricity deals with forces between 

charges 

• Magnetism deals with forces between 

magnets 



The year 1820 

• July 21, Hans Christian Oersted noted the deflection 
of a magnetic compass needle caused by an electric 
current. 

• July 27, André Marie Ampère confirmed Oersted's 
results and presented extensive experimental results to 
the French Academy of Science. 

• He modeled magnets in terms of molecular electric 
currents. 

• He discovered electrodynamical forces between linear 
wires before the end of September. 

• Initiated the unification program of electricity and 
magnetism.  

André Marie Ampère 

(1775 - 1836) 
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Forces Between Wires 

Force is observed between two wires carrying currents 

Note: A test charge at rest near the wires experiences no force 



Forces Between Magnets 



Forces Between Magnets 

B B 



Currents (Charges in motion) 

Produce Magnetic Fields 

Why??? 



• Electrostatics: Source charges at rest 

• Magnetostatics: Source charges moving, 

giving rise to steady currents and constant 

current densities 



What is the force exerted on a test 

charge Q, by some source 

charges                  ?  1 2 3, , ,q q q
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• When the source charges are at rest, it is 
observed that the force acting on the test 
charge is in general position dependent but 
independent of the motion of the test charge 

• Hence one can 
– assigning to the test charge a number Q, called 

its charge 

– assigning to every point in space a vector called 
the electric field E 

• The force can then be given by 

                             FE = QE 

 

• This is called the electric force   
    



What if the source charges are moving? 

• When the source charges are moving, it is found 
that there may be another force in addition to the 
electric force 

• It is verified by experiments that this additional 
force is velocity-dependent and can be 
described by associating to every point in space 
a vector called the magnetic field B 

• This force is then given by 

 

 

• This is called the magnetic force 

B Q F v B

v 

FB 

B 



 Q  F E v B

Velocity-independent force 

 E field Velocity-dependent force 

 B field 

Lorentz Force Law 



Magnetic forces do no work 

The work done by the magnetic force FB is 

d dtl v

 BdW d Q dt    BF l v B v

 v B v

0 BdW

But 

If the charge moves a displacement 



Example: Cyclotron motion  
Consider a charge Q in a uniform magnetic field B. The 

velocity v of the charge is perpendicular to B. 

2v
F QvB m

R
 

p mv QBR  

By Lorentz force law, 

 

where R is the radius of the circle 

(cyclotron formula)  



//  v v v

Q F v B

 //Q   v v B

Q  v B

BF 
// F v

If v has a component parallel to B: 

Besides,   

Therefore,  
//

v is unchanged. 

Example: Cyclotron motion  



Example: Cyclotron motion  
The particle moves in a helix. 



Example: Electron charge-mass ratio 

Consider an electron moving in a region of uniform E-field 

and B-field. 

BeeE 

B
E

If the fields are adjusted such that the electron experiences 

no net force and moves with a constant velocity v 

Then 



Example: Electron charge-mass ratio 
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Switch off the E-field and measure the radius of the circular 

trajectory, R, 



Currents 
• Currents are due to the motion of charges 

• It measures the rate of flow of charges 

• the SI unit of current : ampere (A) 

• One ampere means there is one Coulomb of charges 

flowing through in one second 

C/s1A1 



Currents 

• Current I = rate of flux of charges 

• Current has both magnitude and direction  

• It is a vector 

• Magnitude: 

• Direction is determined by the motion of charges 

– In most situations, it is due to the flow of negative charges 

(electrons) in a certain direction  

– But conventionally, we imagine that it is due to the flow of 

positive charges in the opposite direction 

• Direction of current: 

– The same direction of the flow of positive charges 

– Opposite direction to the flow of negative charges 

dtdqI /



Line Current 

• Charges flowing along a “wire” with negligible cross 

section area.  

• Linear charge density 

• Charges inside moving at velocity v 



 I v

vdtdq 





      
dq

dq dl vdt vdl
dt

    Then  

Surface Current Density 
• Charges flowing inside a “sheet” with negligible 

thickness 

• Surface charge density 

• Charges moving with velocity v  

v 



Surface Current Density 

 K v

• Def: Surface current density K: 

– Magnitude: Rate of charge flow per unit 
length-perpendicular-to-flow 

 

 

– Direction: v (if  is positive), -v (if  is 
negative) 

1 dq
K v

dl dt




 



Surface Current Density 

• In general, if the unit vector    , which is 

perpendicular to the line segment, makes 

an angle q with the direction of K, the rate 

of flow in the direction of     is   

n̂

n̂

ˆ
dq

dl
dt

 K n
cosdl dl q 

n̂

dl 

 

q K 

 



Volume Current Density 

      
dq

dq vdt da vda
dt

     Then 

• Charges flowing inside a volume 

• The volume charge distribution . 

• The charges are moving with velocity v. 



Volume Current Density 

 J v

• Def: Volume current density J: 

– Magnitude: Rate of charge flow per unit area-

perpendicular-to-flow 

 

 

– Direction: v (if  is positive), -v (if  is negative) 

1 dq
J v

da dt




 



Volume Current Density 

• In general, if the area element da makes 

an angle q with the direction of J, the flux 

in the direction of da is  dq
d

dt
 J a

cosda da q 

J 

da 

da 

q 



Continuity Equation 
(Derivation in 3D here. The derivations in 1D and 2D are similar.) 

S S
I Jda d    J a

 d  J

Consider the current crossing a closed surface S: 
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Since charge is conserved locally, 



Continuity Equation 
(Derivation in 3D here. The derivations in 1D and 2D are similar.) 

0
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Since this is true for arbitrary volume V, hence 

continuity equation  
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Force Experienced by Currents 

Inside Given B Field 

• Current are due to charges in motion. 

• By Lorentz force law, moving charges will 

experience magnetic forces in B field. 

• Hence, inside B field, with no E field    



Magnetic Force on Currents 

• Line Current:  

     dq dl dl       BF v B v B I B



Magnetic Force on Currents 

• Line Current:  

   BlFB dI

For line current, I is along the wire. So we define dl 

with the same direction as I. 

 dl BF I B

dl Id I l



  BlFB  dI

Bl  I

If the B-field is uniform, then 

Magnetic Force on Currents 

• Line Current:  

   BlFB dI



Magnetic Force on Currents 

• Surface Current Density :  

     dq da da       BF v B v B K B



Magnetic Force on Currents 

     dq d d         BF v B v B J B

• Volume Current Density :  



Biot-Savart Law 
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The magnetic field of a steady 

line current is give by 

(exactly!!) 

permeability of free space 
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For a line current, 

I is along the direction of the wire 

and usually I is constant along the wire, 

so it can also be written as, 

Biot-Savart Law 
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B-field of a Straight Wire Segment 



B-field of a Straight Wire Segment 
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Consider a wire segment as shown.  

We want to calculate the field at P. 

By Biot-Savart law,  

The magnitude of the B-field is therefore, 
the direction of B is to the page and points outwards. 
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B-field of a Circular Wire 
Consider a circular wire with radius R carrying a current I.  

Evaluate the B-field at a point directly above the center at a 

distance z. 
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By symmetry, the B-field should be 

along the axis, i.e. 



Why    is exactly                 ??? 27 N/A104 0

• Its value is so chosen by the definition of current.  

 

• The definition of the unit of current (SI) – ampere, is  

   related to the magnetic force between two infinitely  

   long straight wires.  



Definition of Current  

• Experiments show that : 

Opposite direction 

Repulsion 

Same direction 

Attraction 



72 10 N / m
F

l

 

• two wires, carrying the same current, will attract each 

other when currents are in the same direction  

• force is reversed but with the same magnitude if the 

currents are in opposite directions  

• 1 ampere is defined as the current carried in each wire 

when the wires are separated by 1m and the force per 

unit length on each wire has a magnitude of 

 

Definition of Current 



Permeability and the Definition of Ampere 
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lA segment of wire 2 with length  ,  experiences a force, 

The force per unit length is 

By definition, when  
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Divergence of B Field 



Consider a general current density ),,()( zyx  JrJ

By Biot-Savart law, 
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Divergence of B 
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Integral Form 

• By divergence theorem 

 

 

 

 

 for arbitrary closed surface S 

0 B
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Curl of B Field 

Ampere’s Law 
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Use divergence theorem, 
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When using the Biot-Savart law to evaluate the field, one 

must include the contributions of all current densities.  

In other words, V  includes all the currents and no current is 

flowing in or out at surface S. 
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JB 0 Ampere’s Law 

The above argument obviously holds also for the other 

components. So 
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Integral Form of Ampere’s Law 
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Consider a surface S with C as the boundary. 

Stokes’ thm:  
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S

I d  J a  is the amount of 

Ampere’s law in integral form 

current enclosed by C 



 Magnetostatics  

Application of Ampere’s Law  



Application of Ampere’s Law 

Like the Gauss’s law, the Ampere’s law can be used to 

evaluate the B-field easily when the system exhibits 

certain symmetries.  

 

In this case, one will usually find the ampere’s law in 

integral form more useful. 

 

Ampere’s law in integral form: 
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Use Ampere’s law to find the B-field of 

an infinity long wire carrying a current I. 

Example:  



From Biot-Savart law and right-hand rule, 

the direction of B-field is circumferential. 

By symmetry, its magnitude is a constant 

on the amperian loop. Apply Ampere’s 

law: 
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Solution: 



Example:  
Use Ampere’s law to find the B-field 

of an infinitely long solenoid carrying 

a current I.  



Solution: Use cylindrical coordinate  

By rotational and translational symmetry, the field depends 

only on s. Consider the circular amperian loop (loop3). 

By ampere’s law: 
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0     sB

sBThe radial component     is also zero.  

sB

If you flip the solenoid to the opposite direction,  

 is unchanged.  

0 B(One can also argue by using               ). 
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But flipping the solenoid is equivalent to switching the current 

to flow in opposite direction, and hence  

zB ˆ)(sB

ẑIn conclusion, B only has    component, and its magnitude 

depends on s only:  
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Consider a rectangular amperian loop (loop 1) outside the 

solenoid. Apply Ampere’s law: 

This is true for all a, b > radius of the solenoid  

   

B is constant outside the solenoid 

0B     outside the solenoid.  

0B  s as  But 
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To find the field inside, consider the amperian loop 2. 

From Ampere’s law, 

where B is the magnitude of the field at the bottom edge 

of the loop. If the number of the turns of wire per unit 

length is n, then 

which is a constant. 

zB ˆ    0nI                           is a constant inside the solenoid, pointing 

to the direction determined by right hand rule. 
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Magnetic Vector Potential 



Magnetic Vector Potential  

AB 

0 BSince  , we can define a vector potential of B  

A is called the vector potential because the divergence of a 

curl is always zero, hence  

0 B  is satisfied automatically. 



Magnetic Vector Potential  
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The one left is then the Ampere’s law: 

A is not uniquely defined by its definition. You can add the 

gradient of a scalar to the vector potential without changing 

its curl: 
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Suppose we have found a particular vector potential      , 

we want to find  so that: 

0   A A is divergence-free 

i.e., 
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0 0 AIf   at infinity, we know that the solution is 

Magnetic Vector Potential  

This is just the mathematical expression of the Poisson 

equation with          replacing  as the source. 

 

The Poisson equation provides always a solution for ! 

0  A

For example: 
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ANow, since   is divergence free, the Ampere’s law implies 

 

 Assuming that in a particular system: 

J 0  at infinity,  

 
then the solution becomes 

Magnetic Vector Potential  

A set of 3 Poisson 

equations, one for each 

vector component! 
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Magnetostatic Boundary Conditions 

The magnetic field is discontinuous across a surface current.  

The relation between the fields on both sides can derived  

by using 
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Magnetostatic Boundary Conditions 

 
s

0aB d

For the perpendicular component, consider the small pill-box 

and use  

The pill-box is so thin that the flux on 

the side-edges can be neglected.  
 

Let the area of the top and bottom 

faces of the pill-box be A.  

 The perpendicular component of the B-field is continuous. 
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For the parallel component, consider a very “thin” rectangular 

amperian loop across the surface. 

Magnetostatic Boundary Conditions 



K̂

ˆ ˆK n

Let the unit vector along the direction of the current be  

and  

So, by Ampere’s law 

Consider the amperian loop 1,  

of which the sides are along the  
K̂ direction. This loop does not 
enclose any current. 
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Magnetostatic Boundary Conditions 



Now, consider the Amperian loop 2, with sides perpendicular 

to the current. By Ampere’s law 
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By the definition of surface current density. 
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Magnetostatic Boundary Conditions 
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Multipole Expansion of the 

Vector Potential 



0

1 1
(cos )

n

n

n

r
P

r r
q





 
  

 
r

Similar to the multipole expansion of the scalar potential 

V in electrostatics, we make use of the  

relation 

Consider a localized current distribution  

as shown. 
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• To avoid tedious mathematics, we shall 

consider, instead of a general volume 

current density J, a linear current flowing 

in a localized wire with uniform current I: 
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Monopole: n = 0 

 

For a closed loop  

There is no magnetic monopole!!  

0 0

0

1
0

1
 ( )

4 4

1
          ( ) (cos )

4

n

nn
n

I
dl d

I
r P d

r

 

 


q








  

  

 

 

I
A r l

l

r r

0
mon

1
( )

4

I
d

r




 A r l

d   l 0



Dipole: n = 1 

 

It can be shown that (recall assignment 1) 
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d  a aDefine   as the vector area of the loop and 

 am I as the magnetic dipole moment. 
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am I is the magnetic dipole moment. 

 

The dipole field can be evaluated by 
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