Electric Fields inside
Matter



* Inside a medium, unlike in vacuum, there

are a lot of charged particles, e.qg.,
electrons, protons, etc.
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* In principle, matter is just a form of source
distribution in vacuum, and we can apply
what we learned to obtain the fields,
provided that the p due to matter inside
the medium is known



* Note, that unlike free source distributions,
the sources inside matter are due to
objects with atomic dimensions, which are
very small compared to macroscopic
length scales

* Hence one can use the multipole
expansion and keep only the leading order
term



* For the electric field, because the atoms
and molecules carry no net charge
(monopole moment), hence the leading
order term is also the dipole term

* This makes it possible to consider matter
as consisting of a large number of pure
electric dipoles



Electric Fields inside Matter
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Dielectrics

—Insulators.
Polarized when
external E field is
applied

Conductors

— Unlimited supply
of free charges



Electric Fields in Matter

Effect of External Field on Matter



Force and torque on a dipole in external E field:
External force:




Force and torque on a dipole in external E field:

External force: +(
NE.




Force and torque on a dipole in external E field:
External force:
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(E,—E ), =(d-V)E,

(E.~E),=(dV)E,

E,-E =X%(d-V)E,+y(d-V)E,+2(d-V)E,
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=(d-V)E *




Force and torque on a dipole in external E field:
External force:

F=F +F
=q(E, -E_)
=q(d-V)E
F=(p-V)E F

In particular, in a uniform E field, F=0.




Force and on a dipole in external E field:

Torque:

Let the position vector of the center of the dipole, O, ber.
The torque about the origin is
+( \
F.

N :(r+%)x|:++(r—gjx|:
O
:rx(F++F)+%><(F+—F)

<
:rx(F++F_)+qd><E+J2rE‘ F- —( r

E +E. O’

=rxF+px




For an ideal dipole, d >0and E_,E_ > E
which is the E field at O

Therefore,

N=rxF+pxE

Note that there is torqgue even when the field is uniform
and F=0: N = D x E
In addition, the torque about the center Is always

N=pxE

even In the case of non-uniform fields.




Torque about center:

N=pxE

« The torque is zero when p is pointing at the same
direction as E, or in the opposite direction.

« When p is parallel to E, the dipole is in stable
equilibrium.
 When p is anti-parallel to E, it is unstable.

Therefore, the torque tends to align the dipole with the
electric field.




The energy of an ideal dipole p due to the torque exerted
by the electric field is:

U=-p-E




Macroscopic dipole moments
created by external E field:

When an external E field is applied on a dielectrics,
which originally shows no macroscopic dipole moment, a
net dipole moment can be observed macroscopically.

There are mainly 2 different mechanisms giving rise to
the polarization observed:

1. Induced dipoles
2. Alignment of polar molecules



1. Induced dipoles

« Atoms or molecules with no dipole
moment originally.

* Applied E field push the nuclei and the
electron clouds Iin opposite directions.

* Creates net dipole moments.




The dipole moment induced Is:

 along the direction of the applied field

« with magnitude proportional to that of the
field when the field is weak

In other words,

p=aE

\

atomic polarizability



2. Alignment of polar molecules

« Some molecules possess permanent dipole moments.
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* The torque tends to align the dipoles with E until the
torque = 0 and the energy U = —p - E IS minimum.



To a first order approximation, we also
assume that the dipole moment Is

* with magnitude proportional to that of the
field when the field is weak



Polarization

* The polarization, P, is defined by the dipole
moment per unit volume:

P = dipole moment per unit volume




Example:

A primitive model for an atom consists of a point nucleus (+q)
surrounded by a uniformly charged spherical cloud (-q) of
radius a. Calculate the atomic polarizability of such an atom.




In equilibrium, the force on the nucleus exerted by the
external field and the uniformly charged sphere must cancel.

Recall: the magnitude of the electric field at a distance d
(d<<R) from the center of a uniformly charged sphere, with

total charge q,

s 1 qd g9 E= 1 qg
dre, @’ 4re, a
p=qd =4re,a’E
3
a =4ng,a’ = 3¢, L 3&,V

where v Is the volume of the atom.



Electric Fields in Matter

The Field of a Polarized Object
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Consider an object with polarization P. Recall that the potential
of a pure dipole p is

1 I-p
V(r):47zg /e
0

The potential produced by this object is therefore
r-P(r
rZ

1

V(=1 )

Are,

dz’

where ) is the volume of the object.
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Consider the gradient with respect to I’

v(2)-v{ 2w (2)

s Ir—r ry) r
Therefore,

V(=2

Recall :v[ij:v[ ! }:-LZ
s r-rl) r

N

r-P(r')
rZ

dz’
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V(r)= L(V'.[P(r')j—V"P(r')}df

- 472'6‘0 Ve Ve

By divergence theorem, the first integral can be turned into
a surface integral over the surface of the object, S:

= LV'.[LW)]M: 1 jsp(r’)'ﬁda'

4re, v Are, v
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v(r)=

Are,

: Ip(r)'nda’+ : I_V'P(r)d
S Ve V

Are, v

T

/

The field is the same as that of surface bound charges o
on S and volume bound charges p, in V, with

l.e.

Jb:Pﬁ and
V(r)=——[ Zeds+
Arey *S ¥~
1 J‘SP(I')'IldS

py=-V-P
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What are bound charges???

Physical interpretation of bound charges:

We derived the expressions for the bound charges
mathematically. They are not just mathematical tools.

They are physically real.




Surface bound charges:

Consider a very small volume element as shown below,
which is small enough such that P is uniform
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Surface bound charges:

The positive charges at the head of the dipoles cancel with
the negative charges at the tail inside the volume, except on
the surfaces, where there are no other positive or negative
charges to cancel them.

A -
\{"“"“




Surface bound charges:
Let the charge be +( and —(

s

Then, D= P.Ad :qd
q:P A

Therefore, o, =

9_p
A



Surface bound charges:

If the surface is not perpendicular to P A

The charge q will still be the same

Oy, A _Hosg=pPh

Aend A



Volume bound charges:

If there are ‘sources’ or ‘sinks’ of P, there will be
negative and positive charges accumulated in a small
volume element enclosing the point:

_I_



Volume bound charges:

For example, when V- P >0, there will - +
be some positive charges on the surface

of the sphere, leaving equal amount of

negative charges accumulated inside.

+ +
The amount of charge on the surface is +
Q=¢ P-da
By definition, 0 1
o, =lm==-lim—¢ P-da=-V-.P

-0 ]/ V-0 )/ S

You can check that this is also true when V:-P <0



Example:

A physical way to look at the last example is to consider the
uniformly polarized sphere as two uniformly charged sphere
displaced by a distance s.

Let the charge carried by the two
spheres be g and —q, with density p
and —p, respectively. Then

A
P=ps and p=§7ZR3P=QS




The E field due to a uniformly charged sphere is
1 4 o,

Exd4nr’="xp—nar’=E="2"r
E 3 3&,

where r is the vector pointing from the center to the
observation point



Hence for two overlapping spheres with charge densities
p and —p, in the overlapping region

I’-+

E-Lr Ly :L(r —r ):—Ls <f3
3&, ‘




Outside the spheres, the field due to the positively charged

sphere is the same as that due to a point charge = p-gﬂR?’

at the center. And similarly for the field due to the negatively
charged sphere.

Therefore, the field outside is the same as that due to a
dipole p = gs:

2

V =
472'6'0 I —lTS



Electric Fields in Matter

The Electric Displacement



Consider Gauss’s Law in the

presence of a dielectric:

1
V-E = Photal
&

0

1
- (pf * Py )
€0
P - Total charge density
P: - Free charge density

P, -Bound charge density



Then,

Integral form:

P, =—V-P

L&V -E=p, -V-P
= V-(5E+P)=p

D=gE+P

electric displacement D

V-D=p;

I:E} D-da= Qfenc

mrface




Example:

A long straight wire, carrying uniform line charge density A,
IS surrounded by rubber insulation out to a radius R. Find

the electric displacement.

wire

N
A N_ |
|

rubber



Solution:

e fp.da-,

D(Zﬂrl):il

Thisis true bothforr>R and r <R

Outside the rubber, P =0

C.E=tp=_—2
&y 27E,r

Inside the rubber, E is unknown. Have to know P first.



Boundary Conditions of D:

Consider a surface with surface charge densityo

D

above

/ Dyetow

The surface charge may be due to bound charges and
free charges: oc=0,+0,



Since ¢) D-da=Q,,.

(Dabove _ Dbelow)' N = O

i 1 1
l.e. D above — D below = Gf

where N is a unit normal vector pointing from “below” to
“above”.

O

(cf. (Eabove below) N=— )
€0



For the parallel components, since

VxD=Vx(g,E+P)

=&,VxE+VxP
=V X P
. /l /l N eY/ I
.« o Dabove o Dbelow — I:)above o I:)below

/] /]
(Cf' Eabove — Ebelow )



Since V x P = 0 in general, so D is not curl free in general,
and there is no “potential” for D.

AlthoughV - D = p; is similarto V . E = £

there is no “Coulomb’s law” for D &0



Linear Dielectrics:

In many situations, the polarization is proportional to the
E-field under the weak-field condition. Define

P=¢,x.E

Materials obeying this relation are called linear dielectrics.




Hence,

D=¢g,E+P
=g E+¢&,1.E
= 5‘0 (1+Ze)E

Define, Permittivity of

& = glo (1+ Ze) free space
D=¢E

\

Permittivity of the material



. . g
Dielectric constant: K=—=1+y,
€0

For linear dielectrics,

X X
o ( oXe ) ( 0 j (1+Zejpf

Therefore, if ps =0 = 0, =0

In other words, all bound charges are on the surface if o =0



Example:

A metal sphere of radius a carries

a charge Q. It is surrounded, out
to radius b, by linear dielectric
material of permittivity & .

Find the potential at the center
(relative to infinity).



Solution:

By Gauss's law,

_ Q.
[)_47”2r . forr>a
sz for a<r<b
drer
E =< 0
2? for r>Db
| el




Solution:

The potential at the center

a Q 0
V _—jE di _—ngo dr—£4ﬂgr2dr—£(0)dr

- Q 1+1_1
dr\ g eca &b




Solution:

The polarization is:

and

r gOZeQ

P gOZeE gOZeQ

Arrer?

. p,=—V:-P=0

. gOZeQ

> forr=>D

dreb

forr=a

Arrea’



Example:

A parallel-plate capacitor is filled with insulating material of
dielectric constant K. What effect does this have on its
capacitance?

/A " /\

Dielectric




Solution:

From Gauss’s law,
D=0,

e_D_2%:
E E
o.d
V =Ed =
E
d
QA
. A
c=22
d

/A " /

— —

In vacuum,

C =

vacC

a
d

. C=2C,_ =KC

&y

Dielectric



Boundary Conditions in Linear Dielectrics:

Consider the interface of two dielectric media

If o, =0, the normal component of D

IS continuous: DL_p.* D1
o I =
On the other hagd swu:e V % E/Z 0 D
E,/ =E] 2
i D, = 1 D)

&1 &y



At the interface between two dielectrics, with permittivities £, and &, , the

electric field in the first dielectric has magnitude E, and makes an angle ¢,

with the normal of the interface. What is the magnitude and direction of the
electric field in the second dielectric?




DT

& y\* E,

B =E' = E =E ———()

above below

-D*, =0, =0=D, =D, ———(2)

above below

E L
tan(r—o, ) =—* =—* ———(3
| ) E. D 3)

_&E
D'}_’

Iy

E X
tana, =—=
-k

o)

- (4)

}.1

()

}!



e (a f > E
From (1) and (2), =2 = £2 v
. =Js D]}! T Dz}!
E,E%
te _ D y te
and (3)/(4) ==> S %) y _6 g &

4 &
o, =tan” | ——*tan ¢,
2 ¢



To determine the magnitude of the

electric field,
£ a/A\* E
2 2 2 2 thz 2 2 2 ) 2
‘EI =L, +E, =L +——=¢ ‘EI‘ =&k, +D,;——=0)
) PE ,

Similarly, &, [E,|" =&,’E, >+ D, > ———(6)

(5)-(6):
812 E, 2 _822 E, = glel,rz _gijz,rE

— (-“‘312 — ‘922 )En-z

=& —&)|E | sin(r-a)

EI
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Ezf =g’ E,f —(&" - &) E,f sin” ¢,

i
=35

—

EE

2 2 2N ot 2
z:‘E ‘: g (& —&7)smn ¢
l 2 2
£, &,

2 . )
B ‘E ‘:[8,'(1 —sIn” ;) + &, SIn” ¢, J
I .,
£

_IE,[ £’ cos’a,+¢&,”sin’ ¢,
| £
Note: when o, =7 /2,1.e. along the boundary, |E_|' :|E,|2.

when ¢, = 7, i.e. perpendicular to the boundary, &’ |E|’2 = ¢, |E2’2



Energy in Dielectric Systems:

Consider the energy required to construct the system by
moving free-charges to their final position, a bit at a time,
and allowing the dielectrics to respond accordingly.

AW = I(Apf )/df
Since  V-D=p, , Ap, V-(AD)
I .(ADVd 7
[[V-(vaD)-(VV)- ADJdz
JI

V-(VAD)+E-AD[d7



|V-(vaD)d7 = [VAD-da =0
S

If the volume integral includes the entire space.
AW = [E-ADdr
For linear dielectrics, D = &

AW =¢[E-AEd~

1
= A Eé‘j Ezdf} For an infinitesimal AE!

W :%EIE-EdT:%ID-Edr



