
Special Techniques for 

Calculating Potentials  

Laplace’s Equation 
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Poisson’s equation:  
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Recall: 

In charge-free regions  =0 

Laplace’s equation:  

The solutions of the Laplace’s equation are called the harmonic functions  



Laplace’s equation:  
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• Cartesian 2D: 

 

• Cartesian 3D: 

 

• Cartesian 1D: 

 



Laplace’s Equation 

• Spherical coordinates: 

 

 

 

• Cylindrical coordinates: 
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Properties of Harmonic Functions I 

1. V(r0) is the average of V of all points at a 
certain distance from r0 

 

• 1D: 

 

• 2D: 

 

• 3D:  
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Proof of (1) for 3D case: 
Since we are considering charge-free regions, the potential 

must be due to some charge distributions outside the region.  
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The potential at a point on the spherical surface shown in 

the figure is 
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The average over the spherical surface is therefore 



By the principle of 

superposition, the 

potential due to any 

charge distribution 

outside the sphere 

satisfies (1). 
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Properties of Harmonic Functions II 

2. By (1), it can be shown that for harmonic 

functions, there is no local  maxima or 

minima 

 Extreme values 

 of V must 

 occur at the 

 boundaries 



• If V has a local 
maximum or 
minimum at an 
interior point 
P(x,y,z), 

• then there 
exists a 
neighborhood of 
P in which  

  

 

         or 

 

 

• In either case,  
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Properties of Harmonic Functions 

3. By (2), it can be 
shown that if 

• V satisfies the 
Laplace’s equation 
inside a region 

• V = 0 on the 
boundary 

  

 then V = 0 at all 
points inside the 
region 

2 0V 

V(Boundary) = 0 

0V 



Proof 

• V has no local maximum or minimum 

inside 

• Because V(Boundary) = 0 

• hence V = 0 inside the region 



Existence and Uniqueness 

Theorem of Poisson’s 

Equation and Laplace’s 

Equation 



Existence Theorem 

• It can be shown that for the Poisson’s equation 

(and in particular, the Laplace’s equation) inside 

a region, when suitable conditions are imposed 

on the boundary of the region, solutions do exist. 



Uniqueness Theorem  

• It can be shown that for the Poisson’s equation 

(and in particular, the Laplace’s equation) inside 

a region, when suitable conditions are imposed 

on the boundary of the region, if a solution exists, 

then it is the unique solution 

• This ensures that once we have constructed a 

solution which satisfies both the differential 

equation and the given boundary conditions, we 

do not need to look for other possible solutions 



Uniqueness Theorem 

The solution to Possion’s (Laplace’s) 

equation in some region is uniquely 

determined if the value of V is specified on 

all boundaries of the region  



Proof: 
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                                                                      to the Poisson’s 

equation satisfying the same boundary conditions, i.e., 
1VSuppose there are two solutions  
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In particular, the uniqueness theorem holds for V 

satisfying the Laplace’s equation. 



Solutions of Poisson’s 

Equation 



• Most of the systems we encounter in EM are of 

this form: 

– We are only interested in obtaining the fields inside a 

certain region 

– The source distribution inside the region is known 

– The source distributions on the boundaries may not 

be known, but given implicitly by boundary conditions 

of the potentials in certain form 

• Hence the problem is reduced to solving the 

Poisson’s equation with given boundary 

conditions 



• For E field: 

• We shall learn how to construct a solution 

satisfying the differential equation and the 

given boundary condition. 

• Because of the uniqueness theorem, once 

we have constructed one solution, we 

know that it is the only solution to the 

problem. 
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• The general strategy of solving the Poisson’s 
equation with given boundary conditions is 
beyond the scope of this course. We shall only 
consider simpler cases when: 

1. the region V  is the entire space, the source is 
localized, and the boundary condition is that 
the potential vanishes at infinity. 

2. the source distribution and boundary conditions 
are of particular forms which allow one to 
construct the solution easily by using simple 
“image” sources. 

3. the source distribution is of particular forms 
which allow one to reduce the Poisson 
equation to the simpler Laplace’s equation. 



Solution For (1) 

•   

• the source  is localized 

•  V(∞) = 0 
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•  It satisfies the Poisson’s equation 



• When  is localized, it is obvious that 

 

 

  

 when r  ∞ 

• It satisfies the boundary condition as well 

• It is the unique solution by the first 

uniqueness theorem 
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Special Techniques for 

Calculating Potentials  

The Method of Images 



The Method of Images: 
Suppose we want to find the solution of the Poisson’s equation in 

a region    with specified boundary conditions. e.g. 

What is the potential 

above the infinite 

plane? 



d 



The original problem may be difficult to solve.  

 

                                                                               , such that the 

boundary conditions are fulfilled.  

We can try to add some image charges outside 

The Method of Images: 



The Method of Images: 

• Since the charges in V  are not changed, the 

potential inside V  satisfies the original Poisson’s 

equation 

• Hence by the uniqueness theorem, the potential 
in V  is the solution of the original problem 

• Notice that by adding image charges, the 
Poisson’s equation outside V  is changed, and 

our solution does not give correctly the potential 

outside 
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D 

+q 

The Classic Image Problem: 

Consider an infinite grounded 

conducting plate on the xy plane, 

with a point charge q at a distance 

D on the positive z axis.  

How do we find the potential, V, 

above the xy plane? 

Infinte plane 

(grounded) 
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V satisfies the Poisson’s equation  

0rabove the xy plane, where      is the position of the point 

charge.   

The boundary condition (B.C.) is 

1) V  =  0  on the xy plane (∵grounded) 

2) V  0   when  2 2 2 2x y z D 



One cannot solve the problem by the direct method 

of integration with the Coulomb’s law (since there is 

induced charge distribution on the conducting plate, 

which is unknown) 



Instead, consider the configuration without the conducting 

plate, but with another charge –q at  
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It is obvious that  
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By the uniqueness theorem, V above the xy plane is the 

potential of the original problem with the conducting plate. 
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Example 
• Find the surface charge density and the total 

amount of charge induced on the plate 



Answer 

• Above the xy plane: 

 

 

• Just above the xy plane: 
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• However, we know that 

• Hence 

 

 

• In polar coordinates of the xy plane: 

• Hence the total induced charge is 
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Special Techniques for 

Calculating Potentials  

Separation of Variables 



• Look for solutions that are products of 

functions, each of which depends on only 

one of the coordinates 

• e.g.  the solution can be written in this form  

    A(x,y)=B(x)C(y) 

What is Separation of Variable? 

 ..............

function of x 

 ..............

function of y 



Cartesian Coordinates 

In 2D case, 

     ,V x y X x Y y
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Laplace’s equation:    

Look for solutions of the form  



whether one should choose  to be positive or negative 

depends on the boundary conditions. 

,where  is a constant. 
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Sub.                                    into the Laplace’s equation, 

We have 

       

     ,V x y X x Y y
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                                                                               , with the 

B.C. given as shown in the above figure. The potential goes 

to zero at the right hand side when  



x  

Find the potential inside the region x > 0, 0 < y <  
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The constant  determines whether we have oscillatory or 

exponential solutions 

If  < 0, then X is oscillatory while Y is exponentially 

growing or decaying 

In this case, we cannot have               as   0V  x  

Solution: 
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Therefore, one must choose  > 0, i.e., 

 

,where k is real. 

How about k ? 
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In addition, V = 0 when y = 0 implies 

Hence 

0V  y aThe B.C. at the top plate,   when  , implies 
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However, the Laplace’s equation is linear.  

Therefore, any linear combination of the solutions is 

also a solution to the equation.  

does not satisfy the B.C. at x = 0. 
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In other words, we want to find  



Is this always possible? 

 0

1

sink

k

C ky V y






Yes!! 

 0

1

(0, ) sin( / )n

n

V y C n y a V y




 

It is a Fourier series, any function V0(y) can be 

expanded in such a series 
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Example: 

Fourier Synthesis of a Square Wave 
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Harmonic functions as solutions are orthogonal, 

only terms for n’=n remain! 



Solution: 

With the coefficients: 



If V0 is a constant potential: 



The solution: 



Cartesian Coordinates 

In 3D case, 

Look for solutions of the form  

Laplace’s equation:    
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Sub.                                                 into the Laplace’s equation, 

we have 

       

       , ,V x y z X x Y y Z z
2 2 2

2 2 2

2 2 2

2 2 2

2

12

2

22

2

32

     0

1 1 1
0

1

1

1

d X d Y d Z
YZ XZ XY

dx dy dz

d X d Y d Z

X dx Y dy Z dz

d X

X dx

d Y

Y dy

d Z

Z dz







  

   







 






,where 

 
1 2 3 0    

Whether one should 

choose the constants 

to be positive or 

negative, depends on 

the B.C.(s) 



  0V x   
 0 ,V y z

V=0 

V=0 

An infinitely long square metal pipe (sides  ) is grounded, 

 0 ,V y z , as shown in the figure below.  

 but one end, at x = 0, is maintained at a specified potential  

Find the potential inside the pipe.  

Example: 



 
2

2 2

2

2
2

2

2
2

2

d X
k l X

dx

d Y
k Y

dy

d Z
l Z

dz


 




 



 


 

 

 

2 2 2 2

sin cos

sin cos

k l x k l xX x Ae Be

Y y C ky D ky

Z z E lz F lz

   

 

 

1 2 30,  , 0   In this case, we must choose  

 Let 

Then 

, 0k l Again, we can assume  

2
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2

22

2

32

1

1

1

d X

X dx

d Y

Y dy

d Z

Z dz








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











0A 0V  x   when   implies 

0D V  = 0   when  y  =  0  implies 

 

 
2 2

, , sin sink l xV x y z Ce ky lz 

Therefore, 

0F V  = 0   when  z  =  0  implies 

 

  0V x   

 0 ,V y z

V=0 

V=0 

 

 

 

2 2 2 2

sin cos

sin cos

k l x k l xX x Ae Be

Y y C ky D ky

Z z E lz F lz

   

 

 
 



1,2,3,k 

1,2,3,l 

In addition, V = 0 when y =   implies: 

and V = 0 when z =   implies: 

  0V x   

 0 ,V y z

V=0 

V=0 

 
2 2

, , sin sink l xV x y z Ce ky lz 

 



 
2 2

,

1 1

, , sin sink l x

k l

k l

V x y z C e ky lz
 

 

 

 

   , 0

1 1

0, , sin sin ,k l

k l

V y z C ky lz V y z
 

 

 

All the B.C.s are satisfied except the one at the left end.  

We look for linear combination 

 

such that 

  0V x   

 0 ,V y z

V=0 

V=0 

 
2 2

, , sin sink l xV x y z Ce ky lz 
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 , 0
0 0 0 0

1 1

sin sin sin sin , sin sink l
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C ky nydy lz mzdy V y z ny mzdydz
    

 

    

0
sin sin

2
knky nydy

 


 
2

, 0
0 0

2
, sin sinn mC V y z ny mzdydz

 



 
  

 
 

Again, since 

we have 

sin sinny mz

To evaluate the coefficients, multiply both sides by  

, where m, n are positive integers,  

and integrate: 

   , 0

1 1

0, , sin sin ,k l

k l

V y z C ky lz V y z
 

 

 



       
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0
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2 2 0 00 0

0

2

42
sin sin sin sin

4 4
      sin sin cos cos
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      16
if  and  are odd

n m

V
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V V
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n m
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   

 

 



 
  

 

 




 



   

 

 
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0

2
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16 sin sin
, ,

n m x

n m

V e ny mz
V x y z

nm

  
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  

 0 0,V y z VFor instance, if  = constant, we have   

Hence, 
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2
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2
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
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Spherical Coordinates 
Laplace’s equation:    

2
2

2 2 2 2 2

1 1 1
sin 0

sin sin

V V V
r

r r r r r


    

       
     

       

     ,V r R r  


Here we shall only consider the particular case in which 

there is azimuthal symmetry so that V is independent of  

Look for solutions of the form  



Sub.                                    into the Laplace’s equation,  

we have 

       

     ,V r R r  

2

2

2

1
sin 0

sin

1 1
sin 0
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1

1
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d dR d d
r R

dr dr d d

d dR d d
r

R dr dr d d
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r
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d d
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
  


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   
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   

  
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  


      



 

 

2 2

2
2

2

1 1 1
sin sin

sin /

1 1
sin 1

1 2 0

d d d dx d

d d dx d d d dx

d d d d
x

dx dx dx dx

d d
x x

dx dx

 
     

 



    
    

    

    
       

    

 
     

cosx For the angular part, let    

1
sin

sin

d d

d d
 

  

 
  

  





   coslP  

   21
1

2 !

l
l

l l

d
P x x

l dx

 
  

 

The above differential equation admits solutions which 

are finite for all                         , only when 

                                     = l(l+1) 

where l are non-negative integers. The solutions are 

called the Legendre polynomials 

 

which can be obtained by the Rodrigues formula 

 



 

 

   

   
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P x

P x x
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P x x x

P x x x

P x x x x





 

 

  

  

Here are the first 6 

Rodrigues formulae 

http://www.jimrolf.com/java.htm 

 

http://upload.wikimedia.org/wikipedia/commons/8/82/Legendre_poly.svg
http://www.jimrolf.com/java.htm


The Legendre polynomials are complete and orthogonal 

in the interval                     .  1 1x  

   
1

1

2

2 1
l m lmP x P x dx

m







The orthogonality can be proven by noticing that 

   
0

2
cos cos sin

2 1
l m lmP P d

m



    


cosx 

0   

If  , the polynomials are orthogonal in the interval  

: 

 



  1

l

l

B
R r Ar

r 
 

The general solution of the radial equation is 
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1
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d dR
r l l
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
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  

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   1
, cosl

ll

B
V r Ar P

r
 



 
  

 

   1
0

, cosl l
l ll

l

B
V r A r P

r
 






 
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 


In conclusion, we have 

and the general solution is 



                                is specified on the 

surface of a hollow, empty sphere of 

radius R. Find the potential inside and 

outside the sphere if given that the 

potential at infinity is zero.  

Example: 

 

 0V The potential 



The general solution is 

0lB 

   
0

, cosl

l l

l

V r A r P 




 
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
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V  being finite at the r = 0 implies:  

So 

 

At  r = R, 

Inside: 
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B
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       

   
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To evaluate the coefficients, multiply both sides by  

 and integrate from 0 to  : 
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



 



 0 0ConstantV V  
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In particular, if  , then 

Hence, 



The general solution is 

So 

 

At  r = R, 

Outside: 
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


 

0lA 0V  r   when   implies:  



 cos sinmP   

To evaluate the coefficients, multiply both sides by  

 and integrate from 0 to  : 
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 0 0ConstantV V  In particular, if  , then 

Hence, 
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Example: 
An uncharged metal sphere of radius R is 

placed in an otherwise uniform electric field  

0
ˆEE k            . The field will push positive charge 

to the “northern” surface of the sphere, and 

negative charge to the “southern” surface. 

This induced charge, in turn, distorts the 

field in the neighborhood of the sphere.  



What is the potential in the region 

outside the sphere? 

Solution: 

0V E z 

The surface of the metal sphere is an equipotential. 

This potential can be arbitrarily set to zero. Therefore, 

at large distance, the potential varies as  

Hence, the B.C.s are 

 , 0V R  (i) 

0 cosV E r  (ii)   when  Rr 
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The general form of the potential is 

 

Hence, (i) implies 

That is 



Rr 
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cos cos cosl

l l

l

A r P E r E rP  




   

1 0A E 

 
3

0 2
, cos
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When                     , the second term in the bracket is negligible 

and (ii) implies 

Therefore, 

The potential is hence 

and all other coefficients are zero. 



The induced surface charge can also be found by 

    



Special Techniques for 

Calculating Potentials  

Multipole Expansion  



• It is clear that a localized charge distribution (r) 

carrying net charge Q, when observed at a 

distance r very large compared with its size , is 

approximately the same as a point charge Q 

• The finite size of the distribution leads to 

correction terms to the Coulomb potential or field 

of a point charge 

 

r 



• The multipole expansion is the series 

expansion of the potentials (and hence the 

fields) in ascending order of /r, with which 

one can obtain approximations of the 

potentials and fields to various orders 

• The approximations is good when 

r 

 

r 



Multipole Expansion of the 

Electric Potential 



• Consider a localized charge distribution 

given by 

• The potential at r is 

  r
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• From the law of cosines 

 

• Hence 

 

  

 

 where      
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• Since the charge is localized, if we are 

interested in the potential at a point r far 

away from the charges, such that  for all r’ 

with non-zero , 

 then 
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• It can be proved that if one collects the 

terms according to the powers in r/r’, then 

the coefficient of the term (r/r’)n is just 

exactly the Legendre polynomials, i.e.   
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• The potential at r is therefore 

 

 

 

 

 

• The above equation is exact 

• Keeping a finite number of 

 terms up to certain order 

 gives the approximate 

 potential at large distance 
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Monopole Term  n = 0 
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Monopole Term  n = 0 
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 Q d    r is the total charge of the distribution 

It is also called the monopole moment 

Notice that the monopole moment 

Q is obviously independent of the 

point we choose as the origin 



• This is the dominant term at large distance 

if Q ≠ 0 

• Under this approximation, all the charges 

are considered to be located at the origin 

• The monopole term of the potential goes 

like 1/r: 

 

• The corresponding E field goes like 1/r2: 
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Dipole Term  n = 1 

• When Q = 0, the dominant term at large r 

is the dipole term: 
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• Let us define the dipole moment of the 

distribution by 

 

 

• Then 
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• The dipole moment so defined is a vector. 

It depends on the choice of origin 

• If we displace the origin by a 

 then the new dipole moment is 
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• However, if Q = 0, then the dipole moment 

becomes independent of the choice of 

origin: 

 

• It depends only on size, shape and 

distribution of the sources 
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• The dipole potential goes like 1/r2: 

 

 

• If p is along the z direction: 
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• The corresponding E field goes like 1/r3: 

 

  dip dip dip

dip dip

1 1ˆ ˆˆ
sin

V V V
V

r r r  

  
     

  
E r r θ 

   3

0

ˆˆ, 2cos sin
4

p
r

r
  


 E r θ

 dip 2

0

cos

4

p
V

r




r



• The above expression makes reference to 

a particular coordinate system and 

direction of p 

• To obtain a coordinate-free form: 
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E field of a pure dipole at the origin: E field of a physical dipole: 

What are the differences??? 



Quadrupole Term n = 2 

• The dominant term when both Q and p 
vanish, and the quadrupole moment is 
non-zero 

• The potential goes like 1/r3 

• The corresponding E field goes like 1/r4 

       1
00 0

1 1 1 1
cos

4 4

n

nn
n

V d r P d
r

    
 






        r r r
r

     2 2

quad 3

0

1 1 1
3cos 1

4 2
V r d

r
  


    r r



Octopole Term   n = 3 

• The dominant term when both Q, p, and 
the quadrupole moment vanish, while the 
octopole moment is non-zero 

• The potential goes like 1/r4 

• The corresponding E field goes like 1/r5 
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Pure Monopole 

• A pure monopole is a distribution which 

gives only the monopole term 

• Consider a point charge Q at a 

• The multipole expansion gives 
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• Notice that although we have a 

single point charge, there are higher 

order moments unless the charge is 

at the origin, so that a = 0 

• Hence a point charge at the origin 

gives a pure monopole 
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• Another example is a localized, spherically 

symmetric charge distribution (r) 

• The field at a far distance is exactly the 

same as that of a point charge at the 

origin. 
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Pure Dipole 

• A pure dipole is an idealized distribution 

which gives only the dipole term 

• To give a zero monopole term, Q = 0 

• Therefore, the dipole moment of a pure 

dipole is independent of the origin 



• Consider a pair of point charges q and –q 

separated by distance d 

• The monopole moment (total charge) is 

zero 

• Hence, at far distance, the dominant term 

is the dipole term 
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• Consider two point charges q and –q, 

located at  r’+ and r’-, respectively 

• The dipole moment is 

 

 

 

 

 

• For a physical dipole with non-zero d, 

higher order moments are non-zero 
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• To obtain a pure dipole, let d  0 and  

 q  ∞, while keeping p = qd finite 

• Because higher order moments have the 

orders qd2, qd3, …, all of them will vanish 

under this limit 

• This is the simplest way 

 to depict a pure dipole 
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