Special Techniques for
Calculating Potentials

Laplace’s Equation



Recall:

Laplace’s equation:

V2V=9ip
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The solutions of the Laplace’s equation are called the



Laplace’s equation:
e Cartesian 1D:
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e Cartesian 2D:
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Laplace’s Equation

« Spherical coordinates:
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» Cylindrical coordinates:
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Properties of Harmonic Functions |

1. V(ry) Is the average of V of all points at a
certain distance from r,

» 1D: V(xo)=%[V(xo+R)+V(xo—R)]

+ 2D V(%)= v

1
° " ' Vo, = V
3D V(XO Yo ZO) 477R? 4) da




Proof of (1) for 3D case:

Since we are considering charge-free regions, the potential
must be due to some charge distributions outside the region.

Consider a point charge ¢ at a distance r from (x,y,z),
where r>R




The potential at a point on the spherical surface shown Iin
the figure Is 1 q

4rgy 1?2 + R? —2rRcos @



The average over the spherical surface Is therefore
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By the principle of
superposition, the
potential due to any
charge distribution
outside the sphere
satisfies (1).
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Properties of Harmonic Functions Il

2. By (1), it can be shown that for harmonic
functions, there is no local maxima or
minima
Extreme values
of V must
occur at the

boundaries




Proof

 IfV has a local
maximum or
minimum at an
Interior point
P(X,y,z),

* then there
exists a
neighborhood of
P in which

V(r)<V(P)
or
Vv (r) >V (P)
* |n either case,

V)5 =V (P)
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Properties of Harmonic Functions

3. By (2), It can be _
shown that if V(Boundary) =0

« V satisfies the
Laplace’s equation
Inside a region

« V=0o0nthe
boundary

then V =0 at all
points inside the
region



Proof

* V has no local maximum or minimum
Inside

* Because V(Boundary) =0

* hence V = 0 inside the region



Existence and Uniqueness
Theorem of Poisson’s
Equation and Laplace’s

Equation



Existence Theorem

* |t can be shown that for the Poisson’s equation
(and in particular, the Laplace’s equation) inside
a region, when suitable conditions are imposed
on the boundary of the region, solutions do exist.



Unigqueness Theorem

* |t can be shown that for the Poisson’s equation
(and in particular, the Laplace’s equation) inside
a region, when suitable conditions are imposed
on the boundary of the region, if a solution exists,
then it is the unique solution

* This ensures that once we have constructed a
solution which satisfies both the differential
equation and the given boundary conditions, we
do not need to look for other possible solutions



Unigueness Theorem

The solution to Possion’s (Laplace’s)
equation in some region is uniquely
determined if the value of V is specified on
all boundaries of the region



Proof:

Suppose there are two solutions V, and V, to the Poisson’s
equation satisfying the same boundary conditions, i.e.,

V, (Boundary) =V, (Boundary )



Consider V,=V,-V,
We have VZ\/3 -0

V, (Boundary) =0
Therefore, V,=0

In other words, V.=V,

In particular, the unigueness theorem holds for V
satisfying the Laplace’s equation.



Solutions of Poisson’s
Equation



* Most of the systems we encounter in EM are of
this form:

— We are only interested in obtaining the fields inside a
certain region

— The source distribution inside the region is known

— The source distributions on the boundaries may not
be known, but given implicitly by boundary conditions
of the potentials in certain form

* Hence the problem is reduced to solving the

Poisson’s equation with given boundary

conditions



e For E field: VV=-p/s

« We shall learn how to construct a solution

satisfying the differential equation and the
given boundary condition.

* Because of the uniqueness theorem, once
we have constructed one solution, we
know that it is the only solution to the
problem.



The general strategy of solving the Poisson’s
equation with given boundary conditions is
beyond the scope of this course. We shall only
consider simpler cases when:

. the region )’ Is the entire space, the source is

localized, and the boundary condition is that
the potential vanishes at infinity.

. the source distribution and boundary conditions
are of particular forms which allow one to
construct the solution easily by using simple
“Image” sources.

. the source distribution is of particular forms
which allow one to reduce the Poisson
equation to the simpler Laplace’s equation.



Solution For (1)

* VV =—plg,
 the source pis localized
[ V(oo) — O







1 r r ,
v, =V L} =-V, [j =—476° (1) =—4n5° (r—r')

p(r')| -4zs5°(r-r') dz’

=—— f p(r')s’ (r—r'ydz’

gO entire space

=—p(r)/ &

+ - |t satisfies the Poisson’s equation



 When pis localized, it is obvious that

V(r): 1 j p(r’)dr’—>0
4'7Z-‘C"O entir V

e space

whenr - «
* |t satisfies the boundary condition as well

* |t Is the unigue solution by the first
unigueness theorem



Special Techniques for
Calculating Potentials

The Method of Images



The Method of Images:

Suppose we want to find the solution of the Poisson s equation in
a region » with specified boundary conditions. e.g.

4 . )
1 What Is the potential
above the infinite
lane?

= g

=



The Method of Images:

The original problem may be difficult to solve.

We can try to add some image charges outside ), such that the
boundary conditions are fulfilled.



The Method of Images:

e Since the charges in )’ are not changed, the
potential inside )’ satisfies the original Poisson’s

equation

* Hence by the uniqueness theorem, the potential
In )/ Is the solution of the original problem

* Notice that by adding image charges, the
Poisson’s equation outside )’ Is changed, and

our solution does not give correctly the potential
outside



The Classic Image Problem:

Consider an infinite grounded Ly

conducting plate on the xy plane,
with a point charge q at a distance
D on the positive z axis.

How do we find the potential, V,
above the xy plane?

T A

D
_ j / y
// /4
/ (grounded) —




V satisfies the Poisson’s equation
VV =—q8(r-r,)/ &,

above the xy plane, where I, Is the position of the point
charge.

The boundary condition (B.C.) is

1) V = 0 on the xy plane (-grounded)
2) V>0 when x*+y*+z°>D?




One cannot solve the problem by the direct method
of integration with the Coulomb’s law (since there is
Induced charge distribution on the conducting plate,

which is unknown)



Instead, consider the configuration without the conducting
plate, but with another charge —q at —Dz

?A

The potential of thi t )

e potential of this system
can readily be obtained as // X /
/ D —
X
o VY
g 1 - 1

V(Xy,2)=

Z A

472'80 \/X2+y2+(z—D)2 \/X2+y2+(Z+D)2




1

1

V(XY 2)= |

It IS obvious that

Are, \/xz +y?+(z-D) \/xz +y*+(z+D)

(1) V& = —q5(r — D2) | &, above the xy plane,

V satisfies the Poisson’s equation

(2 V(x,y,0)=0,and

3) V(x,y,z)—>0 ,when

X +y°+17°>>D°

-V satisfies B.C.

By the uniqueness theorem, V above the xy plane is the
potential of the original problem with the conducting plate.
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Example

* Find the surface charge density and the total
amount of charge induced on the plate
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Answer

* Above the xy plane:

q | X¥+yy+(z-D)2  xx+yy+(z+D)2

E(X, y,z):

s (X2 +y*+(z- D)Z)?)/2 (x2 +y*+(z+ D)Z)sl2

» Just above the xy plane:

s XX+y§—D2  xX+yy+DzZ
dre, (Xz N yz n D2)3/2 (X2 N y2 R D2)3/2
gD

= — 272-80(X2 n yz n D2)3/2 Z

E(X, y,z):




However, we know that E = G(X’ y) vi

Hence €9
gD
o(X,y)=-
() 27z(x2+y2+D2)3/2
D
In polar coordinates of the xy plane: o(r.0)=- 27z(r2q+ D2)3/2

Hence the total induced charge is
Q= [ 5da

R P e

D (2x o d
S I W

- (['2 4 D2)3/2




Special Techniques for
Calculating Potentials

Separation of Variables



What Is Separation of Variable?

* Look for solutions that are products of
functions, each of which depends on only
one of the coordinates

* e.g. the solution can be written in this form
A(X,y)=B(x)

function Bf X

'



Cartesian Coordinates

In 2D case,

oN oV
~+—=0
oX~ oy

Laplace’s equation:

Look for solutions of the form
V(xy)=X(x)Y(y)



Sub. V (%, y¥)=X(x)Y(Yy) into the Laplace’s equation,
d

+ X =0

X2

dy?
1 d?X 1d2Y

= =0
X dx? Y dy?
(1 d°X
X dx?
—
1d?%Y _ |
Y dy? .where A Is a constant.

whether one should choose A to be positive or negative
depends on the boundary conditions.



Example:

Find the potential inside the region x>0, 0 <y <x , with the
B.C. given as shown in the above figure. The potential goes

to zero at the right hand side when X — o0




Solution:

( 2
1d )2( _
X dx
X
1d%Y
2 =—A
kY dy O V=0

The constant A determines whether we have oscillatory or
exponential solutions

If 1 <0, then X is oscillatory while Y is exponentially
growing or decaying
In this case, we cannot have V -0 as X—>®©



Therefore, one must choose 4> 0, I.e.,

(42

Xy
<d2):(

o — _k?Y where k is real.
_ay

How about k ?



(42
X _kex
dx
| d2y
If k=0, then > = —k?Y
X =Ax+B dy
Y=Cy+D

In this case, again we cannot have V -0 as X — o0

If K#0, then
X = Ae® + Be™

'Y =Csinky + Dcosky

It can be observed that solutions for negative k are
redundant if those for positive k are already taken into
account. Hence we consider K >0 .




sinka=0

=k=—, (n=12,3,..)
a

|

Vix,y) = (A.e."k"f + Be_kx)(C sinky + Dcosky)

Since V>0 as X—oo ,we have

A=0
In addition, V =0 when y =0 implies
D=0
Hence V =Ce ™ sinky

The B.C. at the top plate, V =0 when y =a, implies

X = Ae™ +Be™
Y =Csinky + D cosky




The solution:
V =Ce “sinky
does not satisfy the B.C. at x = 0.
However, the Laplace’s equation is linear.

Therefore, any linear combination of the solutions is
also a solution to the equation.




Therefore, We are looking for such a combination

V(X Yy)= icne‘“”x’a sin(nzy/ a)
n=1

so that the B.C. at x = 0 is satisfied.

In other words, we want to find C, so that

V(0,y) =3 C,sin(nzy/a) =V, (y)




» C,sinky =V, (y)
k=1
Is this always possible?
Yes!!

V(0,y) =3 C,sin(nzy/a) =V, (y)

It Is a Fourier series, any function V,4(y) can be
expanded in such a series



Example:
Fourier Synthesis of a Square Wave
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V(0,y)=3C, sin(nzy/a) =V, (y)

o0 a p
Z CH[O sin(nwy/a) sin(n":rry/a) dy =f Vo) sin(n’mry/a) dy
n=I 0
» 0, ifn #£n,
f sin(ury/a) sin(n'ny/a) dy = 4
0 5, if HI = AR.

Harmonic functions as solutions are orthogonal,
only terms for n’=n remain!

2 '
Cp = E./; Vo(y)sin(nmry/a)dy.



Solution:

o0
Vix,y) = Z Che nrx/a sin(nwy/a)

=1

With the coefficients:

2 [
Cp = E[O Vo(y)sin(nry/a)dy.



If V,Is a constant potential:

, I 0, if 1 18 even,
Vo 7 . 2V,
Cp = — sm(mry{a)dy:—o(l — COSAT) =
(l 0 ni 4V{] y - .
e 1if 7 1s odd.
nm

4V, | .
Vix,y) = —2 Z —e XA Gin(nmy /a)
Top=135."



The solution:




Cartesian Coordinates

In 3D case,

oV 82V 82V _0

Laplace’s equation:
P a OX° 8y2 oz°

ook for solutions of the form

V(xy.2)= X ()Y (¥)Z(2)



Sub.V(X,y,z)=X(X)Y (y)Z(z)into the Laplace’s equation,

we have 2 2 2
YZd X +XZd—Y+XY d % =0
dy? dz
1 d2 1d%Y 1d°*
= — t———+——5=0
X Y dy* Z az
(1 /Whether one should )
Y =4 choose the constants
to be positive or
Ny 1 _ negative, depends on
Y y 2 the B.C.(S) Y,
1 d2z S
T where A4, +4,+4,=0




Example:

An infinitely long square metal pipe (sides ) is grounded,
but one end, at x = 0, is maintained at a specified potential
V,(¥.2), as shown in the figure below.

Find the potential inside the pipe. B

|




In this case, we must choose A4, >0, 4,,4, <0

-6t (ddlf =(k?+1%) X
< ‘;TY ey
T2 vz
Then X (x) = Ag x4 gk

Y (y)=Csinky + Dcosky
Z(z)=Esinlz+Fcoslz

Again, we can assume k,| >0

o
>

o
>

o
<

Q o
N

N

o

N~ <|r, X|r
N




Ly

X (x) = Ae® T B

Y (y)=Csinky+ Dcosky
" Z(z)=Esinlz+F coslz

V >0 when X—> o implies A=0
V =0 when y = 0 implies D=0

V =0 when z = 0 implies F =0

Therefore,
V(xY,2)= Ce ¥ **sinkysinlz



0

V(XY,2)= Ce V¥ **sinkysinlz

In addition, V=0 wheny=7implies: k=123,
and V=0when z=x implies: 1=12,3,---



All the B.C.s are satisfied except the one at the left end.
We look for linear combination

(x,y,2) iic I g kysinlz

k=1 1=1

such that

V(0,y,z)= iick,l sinkysinlz =V, (y,z)

k=1 I=1



oo oo

V(0,y,2)=> > C,,sinkysinlz=V,(y,z)

k=1 I=1

To evaluate the coefficients, multiply both sides by
sinnysinmz, where m, n are positive integers,
and integrate:

ZZC“J' sinkysin nydyj' sinlzsinmzdy = _[ J (y,z)sin nysin mzdydz

k=1 I=1
Agalin, since J‘Oﬂsin Ky sin nydy = %5”,

we have
( j j j y Z smnysmmzdydz



( jj _[ y Z smnysmmzdydz

For instance, if V,(y,z)=V, = constant, we have

2 ? T T . . 4V T T
C :K—j IO JO V, sinnysin mzdydz:—zoj'0 sin nydyj0 sin mzdz

n,m

_[ sinnyd (ny _[ sinmzd (mz) = e [cosny] [cosmz]”

7rnm z£°nm

0 If n or mis even
=4 16V,

7°nm

if n and m are odd

Hence,

© 00 —mx - -
V(x,y,z):16\2/0 Z Z € sIn ny sin mz

7T n=135.-m=135, nm



Spherical Coordinates

Laplace’s equation:

1 0( ,0V 1 o(. ,oV 1 oV
——| "= |+ == SINO— [+ ——— ~=0
r or or ) resiné o6 00 ) r°sin“@ o¢

Here we shall only consider the particular case in which
there is azimuthal symmetry so that V is independent of ¢

Look for solutions of the form

V(r,0)=R(r)©(6)



Sub. V (r,0)=R(r)®(8)into the Laplace’s equation,
d

we have
@fL@J—Ej+R F d(gneﬂgjzo
dr dr singd dé@ do

lide 1 (j(ﬂneggjzo
do

+ :
®sing do

I\

o

% (ﬁn@ﬂgj:—i
®sing do do



% d (sin Qd—@)j =—A
®sing do do

For the angular part, let x=cosé@ >

- d(sin0d®j— L 1 d(sinﬁﬁd—(aj

©sing do d0) ©dx/dode dé dx
:li(sinzQdﬁjzli((l_xz)d_@j:_l
® dx dx ® dx dx
2
:>(1—x2)d (?—2xd—®+/1@:o

dx dx



The above differential equation admits solutions which
are finite for all g, only when
A=1(1+1)
where | are non-negative integers. The solutions are
called the Legendre polynomials

®(6)=R (cosb)

which can be obtained by the Rodrigues formula

R()= 2'1|!(§ij (x-1)




P (x)

15

Here are the first 6
Rodrigues formulae

Legendre Polynomials

= o
N/~
x X
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3x? —1)

=
==(5x°-3
(
(

X)

35x* —30x> +3)

63x° — 70x° +15x)

http://www.jimrolf.com/java.htm



http://upload.wikimedia.org/wikipedia/commons/8/82/Legendre_poly.svg
http://www.jimrolf.com/java.htm

The Legendre polynomials are complete and orthogonal
in the interval =1 < X <1

The orthogonality can be proven by noticing that

1 2
' RR. (XX =24,

If x=cos@, the polynomials are orthogonal in the interval
0<O0<r:

0,

Im

7 _ 2
.[0 R (cos@) P, (cosd)sin 8do = —



ii(rzd_RJzu(m)
R dr d

% d (sin Qd—®j =—1(1+1)
| ®sind do do

The general solution of the radial equation is




In conclusion, we have

V(r,&):(Ar' +%)P|(cosé’)

and the general solution is

V(r,0) :i(Ar' +%)P, (cos0)

=0




Example:

The potential V, (€) is specified on the
surface of a hollow, empty sphere of
radius R. Find the potential inside and
outside the sphere If given that the
potential at Infinity Is zero.



Inside:

The general solution is Z(Ar o B' ) (cosO)
=0
V' Dbeing finite at the r = 0 implies: B =0
SO

V(r,e)ziAr'Pl(cosH)
At r =R, -

R6’=

MS

P (cos@)=V,(0)



:2AR'H (cos8) =V, (6)

To evaluate the coefficients, multiply both sides by
P, (cos&)sing and integrate from 0 to 7 :

ij AR'P, (cos&)P, (cosé’)sin@d&’:joﬂvo(e) P, (cos@)singdé

=0

ZO: m+1 jo V,(6)P, (cos@)sinado
m 2 " .

AR 2m+1—j0VO(Q)Pm(cosﬁ)sm@d@
2m+1 ¢z .

A, = e jo V,(6)P,(cos8)sinddé



In particular, if V. (9) = Constant =V, , then

2m+1
A = TG j ' (cos@)sinddo
Zm”vj 1-P, (cos@)sinoda
— 2m+1vj (cos@)P, (cosd)sinoda
2R™
2m+1
— OR™ Vo°2§mo =V05m0
Hence, .
V(r,0)=> Ar'R(cosd)=V,r’p,(cosd) =V,
1=0



Outside:

= B
The general solutionis |V (r.0)= Z(AF' +|—+'1j P (cos9)

V —-0 whenr —ocimplies: A =0

So < B
V(r,H):Zr—Pl(cosH)
=0
At r =R,

(R, 6 :iRB (cos@) =V, ()
|=



V(R,H)—i RB| -P (cos@) =V, (6)

=0

To evaluate the coefficients, multiply both sides by
P, (cos@)siné and integrate from 0 to 7 :

J |+1 cosé’P(cosH)siane:j”

0

V, (0)P, (cos@)sinodd

M8 !':Més

= R '*1 2m+1 .[0 V, (8)P, (cosd)sinadé

B, 2
Rm+1 2m+1
B = 2m+1Rm+1j”

i 0

= |V, (0)P, (cos6)sin 6de

V, (8)P, (cosd)sin 0dg



In particular, if V(&)= Constant=V,, then

B = 2m +1 R”‘”J':VO P, (cos@)sinddo
_zm+l Rm”VOj: P,(cos@) P, (cosd)sin6da
_2Mtlpmay 25 —RV,G.
Hence,




Example:

An uncharged metal sphere of radius R is
placed in an otherwise uniform electric field
E =E k. The field will push positive charge
to the “northern” surface of the sphere, and
negative charge to the “southern” surface.
This induced charge, In turn, distorts the
field in the neighborhood of the sphere.



What is the potential in the region
outside the sphere?

Solution:

The surface of the metal sphere is an equipotential.
This potential can be arbitrarily set to zero. Therefore,
at large distance, the potential varies as V — —E,z

Hence, the B.C.s are
n Vv (R, 9) =0

() V —>-Esrcoséd whenr >>R



The general form of the potential is

o0

Y% (r,@):Z(Ar' +%)P, (cos )

=0

Hence, (i) implies AR' + B _,

That Is




When r >> R, the second term in the bracket is negligible
and (i) implies
Y Ar'R(cos)=—Eyrcosd=—E,rP (cosd)

=0

Therefore,

Al — _Eo
and all other coefficients are zero.
The potential is hence

R3
V(r,H):—EO(r—r—zjcose



The induced surface charge can also be found by

cl’
a(ﬁ)z—g(_}g

r=FK

R3
=&,E, [l+ QTJCOSQ

/

r=KR

=3¢g,E, cost



Special Techniques for
Calculating Potentials

Multipole Expansion



 Itis clear that a localized charge distribution o(r)
carrying net charge Q, when observed at a
distance r very large compared with its size o, IS
approximately the same as a point charge Q

* The finite size of the distribution leads to
correction terms to the Coulomb potential or field
of a point charge

e



* The multipole expansion is the series
expansion of the potentials (and hence the
fields) in ascending order of J/r, with which
one can obtain approximations of the
potentials and fields to various orders

* The approximations is good when
r>=o

—



Multipole Expansion of the
Electric Potential



« Consider a localized charge distribution
given by p(r')
* The potential atr Is

V(r)=——[=p(r')dz

- Are, ? ¥
r



* From the law of cosines
/2 =r>+r”?-2rr'cos@
e Hence

! 2 !
/= r\/lJ{r—j —2r—cose’ =ry'l+e¢
r r

where ¢= r—(Ir——Zc:os 8’)
rir



* Since the charge is localized, if we are
Interested In the potential at a point r far
away from the charges, such that for all r’
with non-zero p, r>r

then g:r—(r——Zcose’j«l —/ =rl+¢
rer

TR PR VOE PR P
r 2 8 16 Ve

Ne




! ! 1\2 ' 2 \3 ' 3
1.1 —E(r—](r——mose’j+§(r—j (r——ZCOSQ') —iﬁr—j (L—Zcose’j e
yoor 2\ r r g\r r 16\ r r
1 r' ' r, i 2 r’ ’ 3 ’
—Z|1+| — |cos® +| — (3cos 6?—1)/2+ — (5cos 0 —30039)/2+-~-
r r r r

* |t can be proved that if one collects the
terms according to the powers in r/r’, then
the coefficient of the term (r/r)" Is just
exactly the Legendre polynomials, I.e.

255 e



—:—Z( j (cosd')

« The potential at r is therefore

1
/ d /
Are, p(r)dr

0.0)

-y }+ljr'npn(cose')p(r')df'

Are, o I

* The above eguation Is exact

« Keeping a finite number of
terms up to certain order
gives the approximate
potential at large distance



V(r)=

Monopole Term n=0

1

1

Are,

J

=

p(r')dz’ =

1

47z50 el Gh

|

jr P, (cos@') p(r' )z’



Monopole Term n=0

1 1
V — —
men ( r) 47250 r

p(r'dz’

Q= Ip(r,)dfr Is the total charge of the distribution
It is also called the monopole moment

Notice that the monopole moment r
Q Is obviously independent of the
point we choose as the origin



This is the dominant term at large distance
IfQ#0

Under this approximation, all the charges
are considered to be located at the origin

The monopole term of the potential goes

like 1/r: v (r)= Q 1

Arg, ¥

The corresponding E field goes like 1/r?:

E, . =-VV (r):_v[ Q 1]_ Q ¥




Dipole Term n=1

« When Q =0, the dominant term at large r
IS the dipole term:

1 (1
V(r)= — P, (cosd') dz’
(r) Are, j I"O 472'80 nzc; r™ Jr c0s?') p(r')
1 / / / /
Vg, (1) = yP— jr cos&p(r')dzr P
0
1 1 / / /
- L (s f
1 i> / / /
= ; _[rp(r )}z



1 r

Z-Irﬁwrﬁdf

V

aip ()

Are, 1

* Let us define the dipole moment of the
distribution by

p :jr’p(r’)dr’




p =Ir’p(r’)dr’
* The dipole moment so defined is a vector.
It depends on the choice of origin
* |If we displace the origin by a
then the new dipole moment Is
p=|Tp(Fyz
:(r’—a)p(r’)dr’
..r'p(r’)dr'—ajp(r')dr'
=p—-Qa




p=p-Qa

 However, if Q = 0, then the dipole moment
becomes independent of the choice of
origin: -
P=P
* |t depends only on size, shape and
distribution of the sources




p :jr’p(r’)dr’

For n point charges &,,G,.**.4, at r/,r},---,r’, respectively,

p — Z qi r.i, 0%
=1

Jx
05X
Oix q,x

X



* The dipole potential goes like 1/r?:

p-f
V. (r)=
oo () Are,r?
: : : cosd
« If p is along the z direction: V,(r)= =
Azt ¥
Y4
0 I




( ): pcosé

Vv 2
Are,r

dip

he corresponding E field goes like 1/r3:

Ny p1Ngy o 1 Ny

dip
o0 (1) or r 06 rsind 0¢

E(r,0)= 47;’ - (2c05.61 +sin 66)
0



E(r,0) = P - (2cos€f+sin H@)

Are,

* The above expression makes reference to
a particular coordinate system and
direction of p

 To obtain a coordinate-free form:

Z

E-_P . (3005 OF — cos Of +sin 96)
A7t ¥

5 = Ccos OF —sin 69

E —
Are,r

(3pcosof — pz)

3

1 1

E(r)=——=(3(p-?)7-p)

Arg, ¥




E field of a pure dipole at the origin:
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E field of a physical dipole:
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Quadrupole Termn=2

1 1 ,
V(r):4ﬂgojl/p nljr P, (cosé') p(r')dz

47z50 sl §

1 1

dre, 1

Vo (1) = _[r =(3cos’ ' ~1) p(r')d7r’

* The dominant term when both Q and p
vanish, and the quadrupole moment is
non-zero

» The potential goes like 1/r3
* The corresponding E field goes like 1/r4




Octopole Term n =3
>

47z50 sl §

er (cos@') p(r')dz’

n+1

1 1
V(r)=
(r) Are, I//,O

1 1

Are, r

Voo (1) = jr = 5cos36? 30039),0( 'z’

* The dominant term when both Q, p, and
the quadrupole moment vanish, while the
octopole moment IS non-zero

» The potential goes like 1/r*
* The corresponding E field goes like 1/r°




Pure Monopole

* A pure monopole is a distribution which
gives only the monopole term

« Consider a point charge Q at a
* The multipole expansion gives

V 1 Oo P 0')Qo dz’ N
(r)= rpmp r” Jr cos6')Qs(r'—a)
_Q Za "P, (cos &) a

A7, 1m0 r



1

V(r)= jr’”P (cos@')Qs(r'—a)dz’

n+1

47230 marll §
. Q Za "P,(cos8')
Are, 2 r™

* Notice that although we have a
single point charge, there are higher
order moments unless the charge Is
at the origin, sothata =10 o

 Hence a point charge at the origin
glves a pure monopole a



* Another example iIs a localized, spherically
symmetric charge distribution po(r)

* The field at a far distance is exactly the

same as that of a point charge at the
origin.

A(r) O



Pure Dipole

* A pure dipole Is an idealized distribution
which gives only the dipole term

* To give a zero monopole term, Q=0

* Therefore, the dipole moment of a pure
dipole is independent of the origin




« Consider a pair of point charges q and —q
separated by distance d

* The monopole moment (total charge) Is
Zero

« Hence, at far distance, the dominant term
IS the dipole term

-



« Consider two point charges g and —q,
located at r’, and r’_, respectively

* The dipole moment is
p=ar —qr’ =q(r;—r’)=qd

/ /
d=r —r'

* For a physical dipole with non-zero d,
higher order moments are non-zero



* To obtain a pure dipole, letd = 0 and
g =2 «, while keeping p = qgd finite
* Because higher order moments have the

orders gd?, qds, ..., all of them will vanish
under this limit

* This Is the simplest way
to depict a pure dipole




