Solution to HW6

8.16
$$\frac{I_{out}}{I_{in}} = cos^2(40 - 10)cos^2(60 - 10) = 0.31.$$

- 8.21 Output of the rotating polarizer: $I_{out2}=I_{out1}cos^2(\omega t)$, Output of the third polarizer: $I_{out3}=I_{out2}cos^2\left(\frac{\pi}{2}-\omega t\right)=\frac{I_{out1}}{8}[1-\cos(4\omega t)]$.
- 8.37 Left-handed elliptical polarization. (Any reasonable analysis would be fine)
- 8.42 Comparison of the irradiance output can distinguish the polarizer and the wave plate.

8.53
$$\hat{E}_1 \cdot \hat{E}_2^{\dagger} = 0, \hat{E}_2 = {2 \choose i}.$$

- 8.72 (a) $E_{out}=\frac{1}{2\sqrt{2}}\binom{1+\sqrt{3}}{1-\sqrt{3}}$, polarization direction is $\theta=-15^\circ$ with respect to x axis;
 - (b) $E_{out} = \frac{1}{2\sqrt{2}} {1+\sqrt{3} \choose 1+\sqrt{3}}$, polarization direction is $\theta=75^\circ$ with respect to x axis;
 - (c) Rotation angle is -15° .