Solutions to HW1 of PHYS 3038, Fall 2015

2.15 (a)
$$T = 0.20 s$$
 (b) $f = 5Hz$ (c) $\lambda = 8cm$

2.22
$$\psi(x,t) = (10^3 V/m) cos [9.5 \times 10^6 m^{-1} (x + 3 \times 10^8 (m/s)t)]$$

2.23
$$y(x,t) = C/[2 + (x + vt)^2]$$

- **2.32** (a) It's a travelling wave in the +y direction, with speed v = b/a. $\psi(y, t) = \exp[-(ay bt)^2]$
 - (b) Not a travelling wave.
 - (c) It's a travelling wave in the -x direction, with speed v = a/b.
 - (d) It's a travelling wave in the +x direction, with speed v=1.
- **2.33** $\psi(x,t) = 5.0 \exp{\left[-a\left(x+\sqrt{b/a}t\right)^2\right]}$. The propagation direction is negative x; v=0.6 m/s.
- **2.40** The equation is satisfied whenever $\alpha^2 + \beta^2 + \gamma^2 = 1$.
- **3.4** The solution is trivial.
- **3.5** a) In the direction specified by vector $-2\hat{\imath} + \sqrt{5}\hat{\jmath}$.

b)
$$E_0 = 9 \times 10^4 V/m$$
.

- c) The wave moves in the direction of $\vec{k}=\frac{1}{3}\big(\sqrt{5}\hat{x}+2\hat{y}\big)\pi\times10^7m^{-1}.$
- d) $\lambda = 200$ nm.

e)
$$\omega = 9.42 \times 10^{15} \text{ rad/s}$$
, $f = 1.5 \times 10^{15} Hz$.

f)
$$v = 3.0 \times 10^8 m/s$$
.

3.7 a)
$$f = 5.45 \times 10^{14} Hz$$
.

b)
$$\omega = 3.43 \times 10^{15} \text{ rad/s}$$
, $k = 1.14 \times 10^7 m^{-1}$.

c)
$$B_0 = 2 \times 10^{-6} T$$
.