PHYS 3038 Optics L8 More on Geometrical Optics Reading Material: Ch6.3-6.5

OB

Shengwang Du

2015, the Year of Light

6.3 Aberrations

03

Monochromatic aberrations

- **™** Spherical aberration
- ca Coma
- Astigmatism
- **©** Distoration
- **Chromatic** aberrations

Spherical Aberration

Paraxial condition $\sin \varphi \cong \varphi$

$$\frac{n_1}{S_o} + \frac{n_2}{S_1} = \frac{n_2 - n_2}{R}$$

$$\sin \varphi = \varphi - \frac{\varphi^3}{3!} + \frac{\varphi^5}{5!} - \frac{\varphi^7}{7!} + \cdots$$

$$\frac{n_1}{S_o} + \frac{n_2}{S_1} = \frac{n_2 - n_2}{R} + h^2 \left[\frac{n_1}{2S_o} \left(\frac{1}{S_o} + \frac{1}{R} \right)^2 + \frac{n_2}{2S_i} \left(\frac{1}{R} - \frac{1}{S_i} \right)^2 \right]$$

L.SA & T.SA

Wavefront Abeerration

Figure 6.15 Since this wavefront deviates from a portion of a sphere (converging to the Gaussian image point), it is said to be aberrated. The extent of that deviation measured peak-to-peak is an indication of how far from perfection the image will be.

Lens Alignment for minimizing SA

Huygens Points

Figure 6.18 An oil-immersion microscope objective.

Hubble Telescope

Hubble Telescope

HST images of the M-100 galaxy with (before repair) and without (after repair) spherical aberration. (Photos courtesy of NASA.)

Coma

Coma

Figure 6.25 The effect of stop location on coma.

Astigmatism

Astigmatism

Astigmatism

Astigmatism causes blur along one direction

ABCD

Vertical lines may be more blurred

Field Curvature

$$\Delta x = \frac{y_i^2}{2} \sum_{j=1}^m \frac{1}{n_j f_j}$$

Distortion

The Effect of Stop Location

Chromatic Aberrations

03

$$\frac{1}{f} = (n_l - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$
 [5.16]

Axial Chromatic Aberration

Laterial Chromatic Aberration

Achromatic Doublet

6.4 Grin Systems

$$(OPL)_r + \overline{AB} = (OPL)_o$$

and

$$n(r)d + \overline{AB} = n_{\max}d$$

But
$$\overline{AF} \approx \sqrt{r^2 + f^2}$$
; moreover, $\overline{AB} = \overline{AF} - f$ and so

$$n(r) = n_{\text{max}} - \frac{r^2}{2fd}$$

Figure 6.43 (a) A radial-GRIN rod producing a real, magnified, erect image. (b) Here the image is formed on the face of the rod. (c) This is a convenient setup for use in a copy machine.

Figure 6.44 Radial GRIN lenses with several pitches used in a few typical ways.