PHYS 3038 Optics L4 EM Theory, Photons, & Light Reading Material: Ch3.3-3.7

Shengwang Du

2015, the Year of Light

3.3 Energy & Momentum

Vacuum

$$u_E = \frac{\varepsilon_0}{2} E^2 \qquad u_B = \frac{1}{2\mu_0} B^2$$

For plane wave: $E = CB$
$$u = u_E + u_B = \varepsilon_0 E^2 = B^2 / \mu_0$$
 Energy density

Energy flow density $S = uc = c\varepsilon_0 E^2 = c\varepsilon_0 EcB = c^2 \varepsilon_0 EB = \frac{1}{\mu_0} EB$

Poynting vector

$$\vec{S} = c^2 \varepsilon_0 \vec{E} \times \vec{B} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$$

Medium

$$u = \frac{1}{2}(\vec{E} \cdot \vec{D} + \vec{H} \cdot \vec{B}) \qquad \qquad \vec{S} = \vec{E} \times \vec{H}$$

Average Energy and Power of EM Wave

$$\vec{E} = \vec{E}_0 \cos(\vec{k} \cdot \vec{r} - \omega t) = \operatorname{Re}\left\{e^{i(\vec{k} \cdot \vec{r} - \omega t)}\right\}$$
Optical frequency ~10¹⁵ Hz
$$u = \varepsilon_0 E^2 = \varepsilon_0 E_0^2 \cos^2(\vec{k} \cdot \vec{r} - \omega t) = \frac{1}{2}\varepsilon_0 E_0^2 \left[1 + \cos 2(\vec{k} \cdot \vec{r} - \omega t)\right]$$
$$= \frac{1}{2}\varepsilon_0 E_0^2 + \frac{1}{2}\varepsilon_0 E_0^2 \cos 2(\vec{k} \cdot \vec{r} - \omega t)$$

Time-averaged
$$\langle u \rangle_T = \frac{1}{2} \varepsilon_0 E_0^2 + \frac{1}{2} \varepsilon_0 E_0^2 \langle \cos 2(\vec{k} \cdot \vec{r} - \omega t) \rangle_T = \frac{1}{2} \varepsilon_0 E_0^2$$

Intensity $I = \langle S \rangle_T = c \langle u \rangle_T = \frac{1}{2} c \varepsilon_0 E_0^2$ average energy per unit area and per unit time (W/m²)

Power

$$P = IA = \frac{1}{2}c\varepsilon_0 E_0^2 A$$
 average energy through the area A per unit time (W)

3.3.3 Photons

Representation of EM field – chargeless and massless

Photon of a plane wave (\vec{k}, ω)

Energy of a photon in the plane wave: $\hbar \omega = hv$ Momentum of a photon in the plane wave: $\hbar k = \frac{h}{\lambda}$ Mean photon flux $\Phi = \frac{P}{\hbar \omega}$

TABLE 3.1The Mean Photon Flux Density fora Sampling of Common Sources

Light Source	Mean Photon Flux Density Φ/A in units of (photons/s·m ²)
Laserbeam (10 mW, He-Ne, focused to 20 μ m)	10 ²⁶
Laserbeam (1 mW, He-Ne)	1021
Bright sunlight	1018
Indoor light level	1016
Twilight	1014
Moonlight	1012
Starlight	1010

Photon Counts of a coherent light

Figure 3.23 A typical histogram showing the probability or photoncount distribution for a beam of constant irradiance.

EM Wave VS Photon

 $\vec{E} = \vec{E}_0(\vec{r},t)\cos(\vec{k}\cdot\vec{r}-\omega t) = \operatorname{Re}\{\vec{E}_0(\vec{r},t)e^{i(\vec{k}\cdot\vec{r}-\omega t)}\}\$

$$\langle u \rangle_T = \frac{1}{2} \varepsilon_0 E_0^2(\vec{r}, t) = N(\vec{r}, t)\hbar\omega$$

$$N(\vec{r},t) = \frac{\varepsilon_0 E_0^2(\vec{r},t)}{2\hbar\omega}$$

Photon # density ~ E_0^2 (

$$E_0^2(\vec{r},t)$$

Read texbook

3.4 Radiation: Classical EM

 \bigcirc Accelerating charge \rightarrow Radiation

Synchrotron Radiation

Synchrotron Light Source

Electric Dipole Radiation

More on: <u>https://en.wikipedia.org/wiki/Dipole_antenna</u>

Quantum Physics of Radiation

Laser Cooling and Trapping

 \int

1997 Nobel Prize in Physics

2D ⁸⁵Rb MOT @ HKUST

Number of atoms: ~10⁸ Temperature: ~10 uK

Light in Bulk (Dielectric) Matter

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P} = \varepsilon \vec{E}$$
$$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M} = \frac{\vec{B}}{\mu}$$

$$\varepsilon_0 \Longrightarrow \varepsilon = \varepsilon(\omega)$$

Dispersion

$$\mu_0 \Rightarrow \mu = \mu(\omega)$$

For most material (nonmagnetic)

$$\mu = \mu(\omega) \cong \mu_0$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\nabla \times \vec{H} = \vec{J}_f + \frac{\partial \vec{D}}{\partial t}$$
$$\nabla \cdot \vec{D} = \rho_f$$
$$\nabla \cdot \vec{B} = 0$$

Dispersion (Dielectric)

$$u(\omega) = \frac{1}{\sqrt{\varepsilon(\omega)\mu(\omega)}} = \frac{c}{n(\omega)}$$

$$u(\omega) = \sqrt{\frac{\varepsilon(\omega)\mu(\omega)}{\varepsilon_0\mu_0}} = \sqrt{K_E(\omega)K_M(\omega)}$$

$$K_E(\omega) = \sqrt{\frac{\varepsilon(\omega)}{\varepsilon_0}}$$
Dielectric constant
$$K_M(\omega) = \sqrt{\frac{\mu(\omega)}{\mu_0}} \approx 1$$

EM Spectrum

3.7 Quantum Field Theory

QFT: wave-particle duality
 Wave is the field of its particle
 Particle of the particle of its field.

QED (Quantum Electrodynamics): Quantum theory of EM field and light-matter interaction.