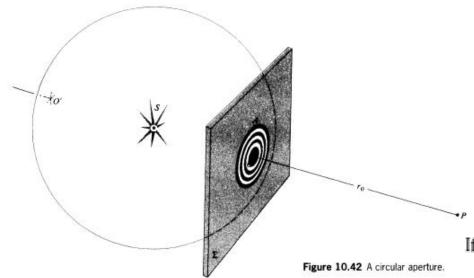
PHYS 3038 Optics L20 Diffraction Reading Material: Ch10.3.3-10.3.11

CB

Shengwang Du

2015, the Year of Light



$$K(\theta) = \frac{1}{2}(1 + \cos \theta)$$

For a small hole, θ is small, K varies little

10.3.3 Circular Apertures

If m is even, then since $K_m \neq 0$,

$$E = (|E_1| - |E_2|) + (|E_3| - |E_4|) + \dots + (|E_{m-1}| - |E_m|)$$

Because each adjacent contribution is nearly equal,

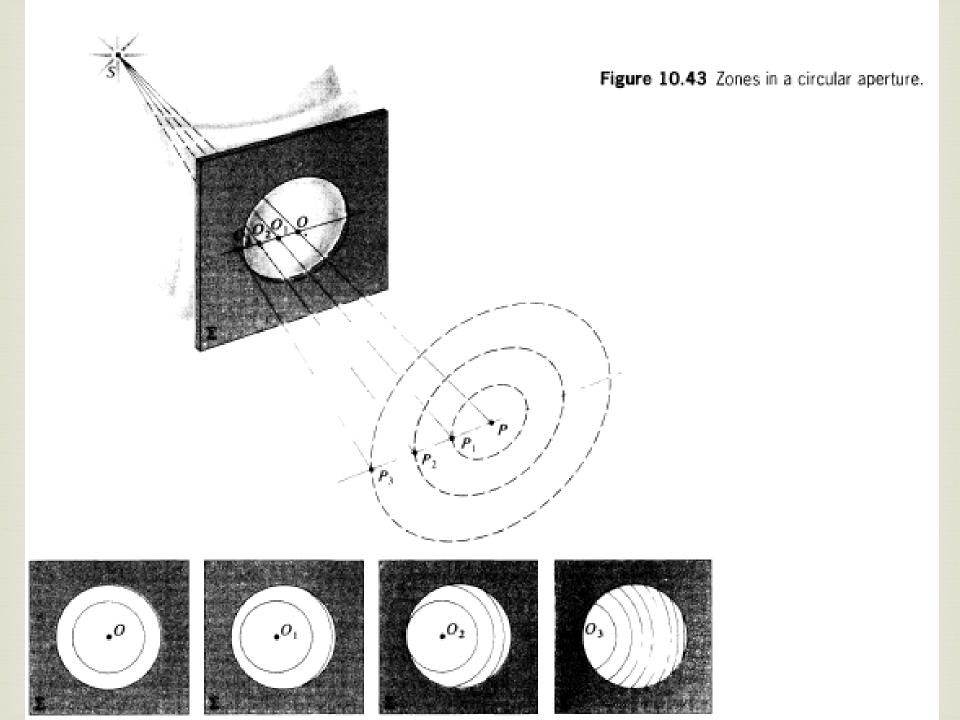
$$E \approx 0$$

and $I \approx 0$. If, on the other hand, m is odd,

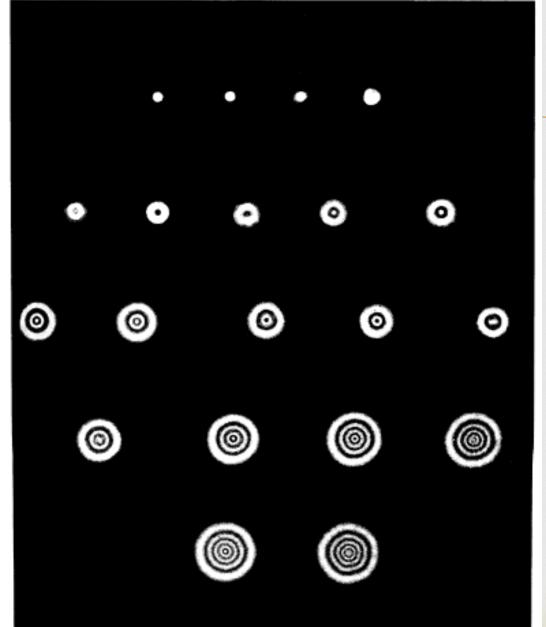
$$E = |E_1| - (|E_2| - |E_3|)$$
$$- (|E_4| - |E_5|) - \dots - (|E_{m-1}| - |E_m|)$$

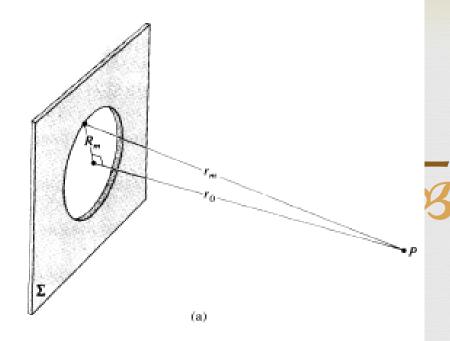
and $E \approx |E_1|$

which is roughly twice the amplitude of the unobstructed wave. This is truly an amazing result. By inserting a screen in the path of the wave, thereby blocking out most of the wavefront, we have increased the irradiance at *P* by a factor of four.



Diffraction Patterns for Circular Apertures





+1 -1 -2 0 0.5 1 1.5 2 2.5 3

Plane Wave Circular Hole

$$R_m^2 = (r_0 + m\lambda/2)^2 - r_0^2$$

$$R_m^2 = mr_0\lambda + m^2\lambda^2/4$$

Under most circumstances, the second term in Eq. (10.90) is negligible as long as m is not extremely large; consequently

$$R_m^2 = mr_0\lambda$$

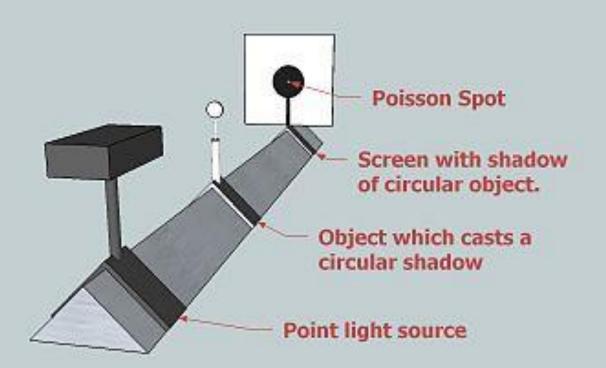
10.3.4 Circular Obstacles

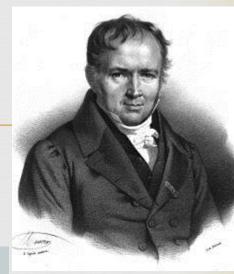
Poisson's Spot

03

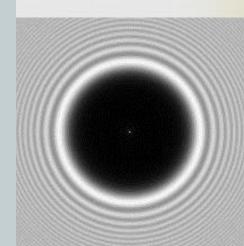
Augustin-Jean Fresnel

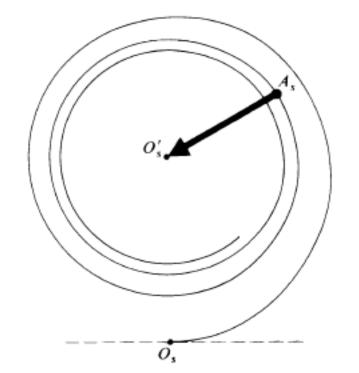
https://en.wikipedia.org/wiki/Arago_spot





Siméon Poisson



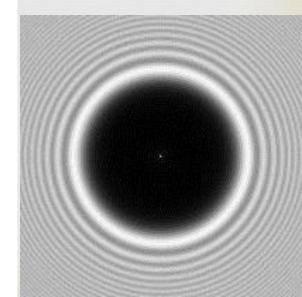


Circular Obstacles

$$E = |E_{\ell+1}| - |E_{\ell+2}| + \cdots + |E_m|$$

(where, as before, there is no absolute significance to the signs other than that alternate terms must subtract). Unlike the analysis for the circular aperture, E_m now approaches zero, because $K_m \to 0$. The series must be evaluated in the same manner as that of the unobstructed wave [Eqs. (10.78) and (10.79)]. Repeating that procedure yields

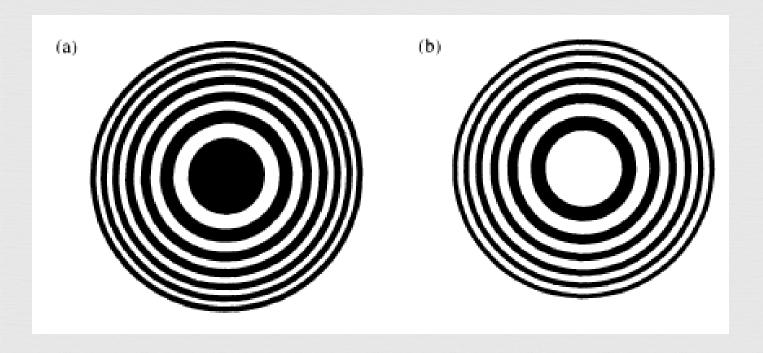
$$E \approx \frac{|E_{\ell+1}|}{2} \tag{10.92}$$

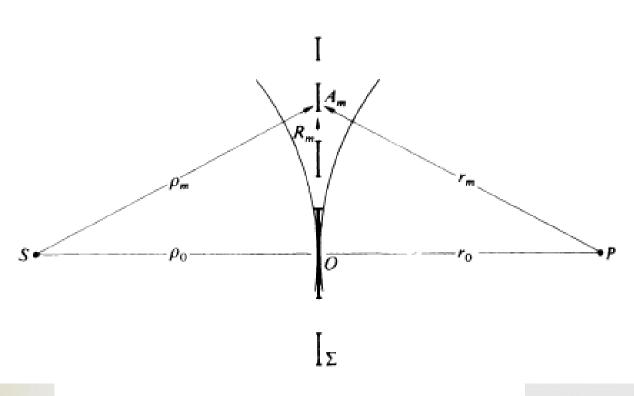


Fresnel Zone Plate

03

 $E = E_1 + E_3 + E_5 + \cdots + E_{39} \approx 20E_1.$





Fresnel Zone Plate

$$(\rho_m + r_m) - (\rho_0 + r_0) = m\lambda/2$$

Clearly, $\rho_m = (R_m^2 + \rho_0^2)^{1/2}$ and $r_m = (R_m^2 + r_0^2)^{1/2}$. Expand both these expressions using the binomial series. Since R_m is comparatively small, retaining only the first two terms yields

$$\rho_m = \rho_0 + \frac{R_m^2}{2\rho_0}$$
 and $r_m = r_0 + \frac{R_m^2}{2r_0}$

Finally, substituting into Eq. (10.93), we obtain

$$\left(\frac{1}{\rho_0} + \frac{1}{r_0}\right) = \frac{m\lambda}{R_m^2} \tag{10.94}$$

$$f_1 = \frac{K_m}{m\lambda}$$

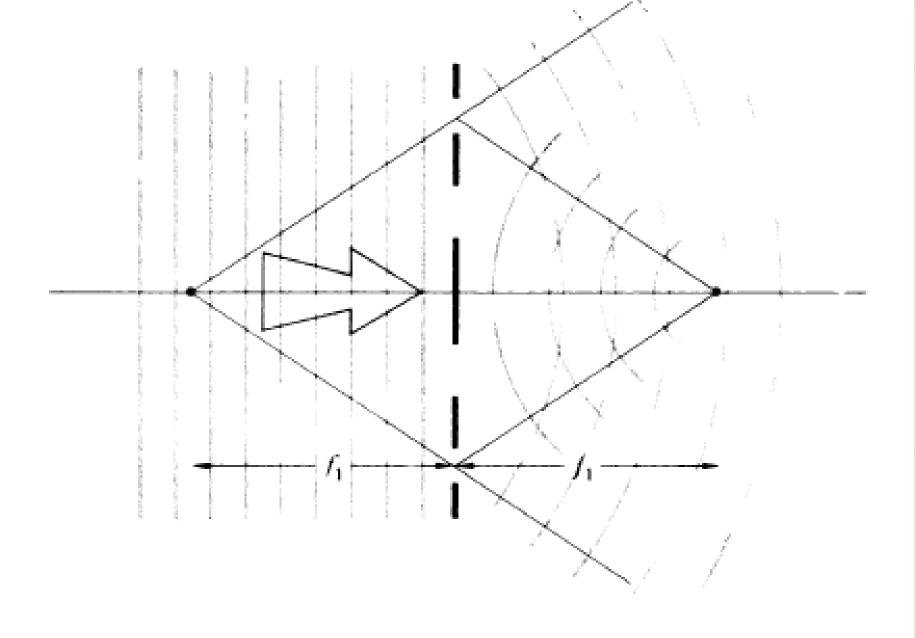
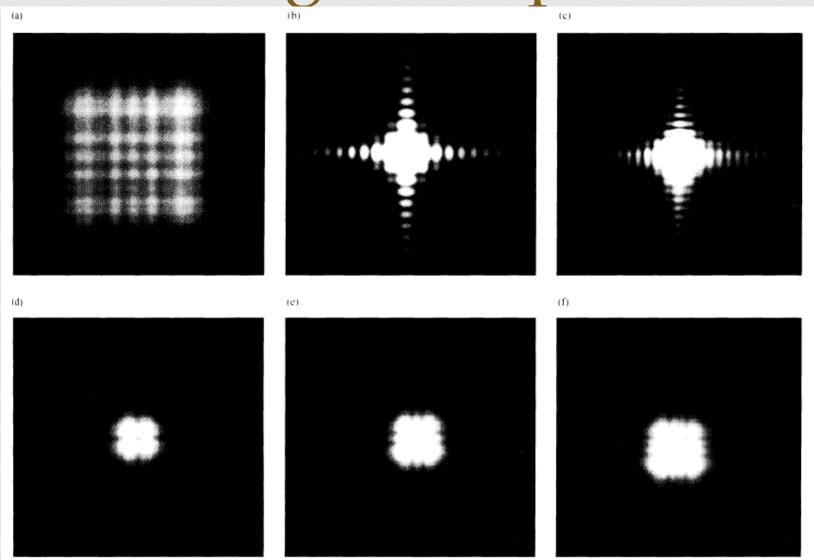


Figure 10.48 Zone-plate foci.

Rectangular Aperture



(a) A typical Fresnel pattern for a square aperture. (b)–(f) A series of Fresnel patterns for increasing square apertures under identical conditions. Note that as the hole gets larger, the pattern changes from a spread-out Fraunhofer-like distribution to a far more localized structure. (Photos by E. H.)