PHYS 3038 Optics
18 Diffraction
Reading Material: Ch10.2-2
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10.2.3 Fraunhofer Diffraction
by many Slits
Recall: single slit  E, = % etfRe=l0t ginc B
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Many Slits
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ler treatment [Eqg. (10017)], principal maxima occur when
(sin Mee/sin ) = N, that is, when

a=0 7 x2m...

or equivalently, since & = (ka/2) sin @,
a sin By, = mA (10,32)

withm =0, £1, 2 ..., This 15 quite general and gives nse to
the same &-locations for these maxima, regardless of the value
of N = 2. Minima, of zero flux density, exist whenever (sin
Na/sin o) = 0 or when
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Between consecutive principal maxima (1Le., over the range in
cv 0f 77 ) there will therefore be N = 1 minima. And, of course,
between each pair of minima there will have to be a sub-
sidiary maximum. The term (sin Ne/sin o), which we can
think of as embodying the interference effects, has a rapidly
varying numerator and a slowly varving denominator. The
subsidiary maxima are therefore located approximately at
points where sin N has its greatest value, namely,
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The N — 2 subsidiary maxima between consecutive principal
maxima are clearly visible in Fig, 10.16. We can get some idea
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Figure 10.16 Diffraction patterns for sht systems shown at left, Francis

Weston Sears, Optics. Repnrded with perrission of Addsan Wesley Longman, Inc,)
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10.2.4 2D Aperture
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Figure 10.18 Fraunhafer diffraction from
an arbitrary aperture, where r and K are
very large compared to the size of the hale.




Rectangular Aperture

_ Dg,
R

il T e

B = %ei(kR—a)t) ﬂ o—ik(Xx+YY)/R g

a/2 b/2
o —UXX/R g [

-a/2 —-b/2

rb/z

~
=
i
g
~

\—/
AP

e—ikYy/Rdy

a/2
r e—ikXx/Rdx

Sa/2 =0

e—ikYy/Rdy

elkReg=10t ginc o sinc 8

Figure 10

I = I sinc?a sinc?p

ka kaX kb | kbY
a=<—)sin9x=— e ) Sm@x:ﬁ



Rectangular Slit

I = Iy sinc? B, sinc? B,,




Rectangular Slit

Figure 10.20 (a) The irradiance distribution for a square aperture. (bt The irradiance
produced by Fraunhofer diffraction at a square aperture. (c) The electric-field distribution
produced by Fraunhofer diffraction via a square aperture. (Photos courtesy R G, Wilsor, lnas
Wesheyan University.



Circular Aperture
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The Bessel function (of the first kind) of order zero
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Figure 10.23 (a) The Airy pattern. (b Electric field created by
Fraunhofer diffraction at a circular aperture. (c) lrrachance resulting

from Fraunhofer diffraction at a circular aperture, 1Photos courtesy B G
Wilson, linois Wesleyan University, |
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Optical Imaging, Diffraction

Limit, & Resolution
— Wave Nature of Light

Image Resolution
R Sensor resolution (pixel resolution)
R Spatial resolution




Optical Imaging




Optical Imaging
Principle

Geometric Optics: point (object plane) < point (imaging
plane)



Imaging Resolution: How
small are we able to see?

Remember: light is wave!
Object

Wave Optics: point (object plane) = spot (imaging plane)

For illustration, we set image amplification as 1 to show the resolution.



How small can we make ><
a light spot?

Geometric Optics Focus

2D ideal sizeless point at (x, y):
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P(x) = |s(x)|* =

FWHM=0.44\
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J1(2mp/A): Bessel function of the first kind, order 1
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with Numerical Aperature
(N A=nxsin0)

Object
Image

By replacing A with A/sinf , we get
FWHM=0.5 1./sin® = 1/ (2sin0)

Further including the refractive index n of the imaging medium (A—X/n), we obtain

FWHM=Abbe Resolution= ?»/(ZnsinO)=?\/(21$IA)




A Real Imaging System

with Numerical Aperature (NA)
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Z-Axis (Nanometers)

NA=nsin6<n

FWHM=A/(2NA)=L/(2n) = A/ 2 in air

Optical microscope (A: 400 nm - 1000 nm):
best achievable resolution is 200 nm



Optical Microscope

Ernst Abbe is credited by
many for discovering the
resolution limit of the
microscope, and the formula
(published in 1873): ‘Abbe
limit’ Microscope by Carl
Zeiss (1879) with
/\ optics by Abbe

d

~ 2NA » Nikon inverted microscope

http://en.wikipedia.org/wiki/Ermst_Abbe



Magnification vs.
Resolution

In principle, one can achieve a magnification as large as possible
by combining different lenses (then the FWHM of the image spot
we discussed previously should also multiply the same
magnification factor). There is a limit to the resolution no matter
how big the magnification is. This is because light is wave.

Diffraction Limit

d=A/(2NA) 200 nm for visible light



