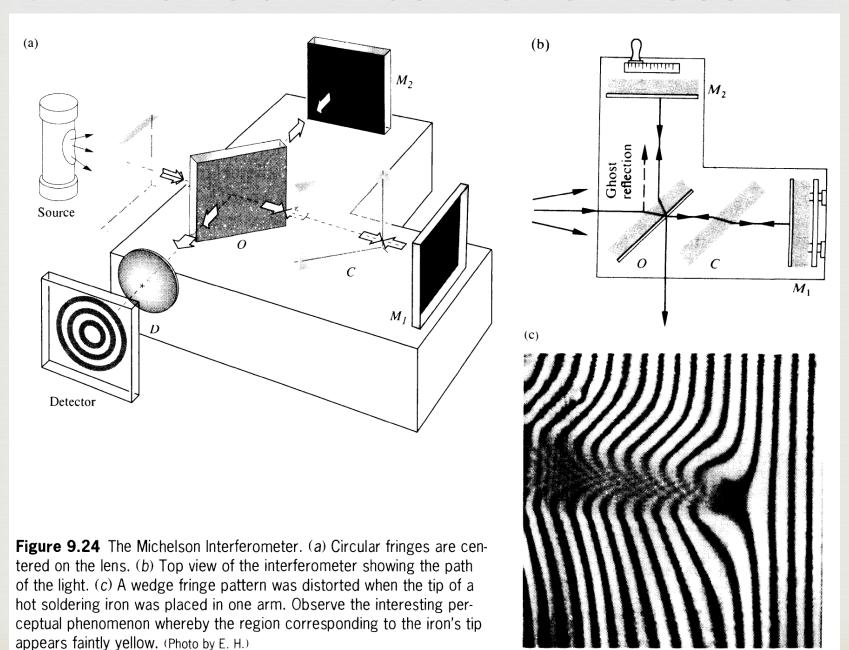
PHYS 3038 Optics L15 Interference Reading Material: Ch9.4-6

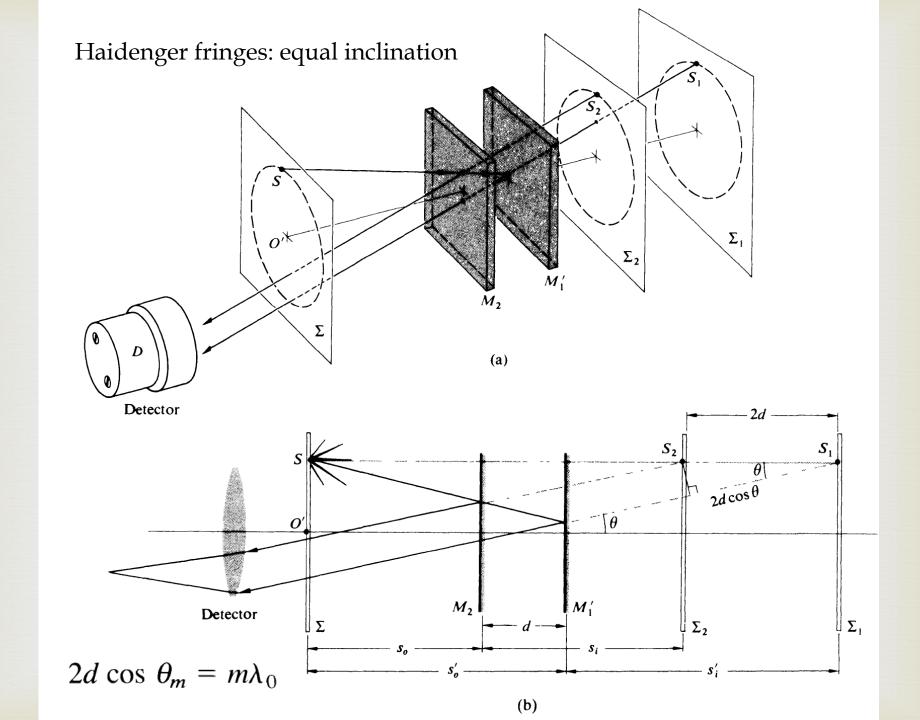
03

Shengwang Du

2015, the Year of Light

Mirrored Interferometers





Michelson Interferometer

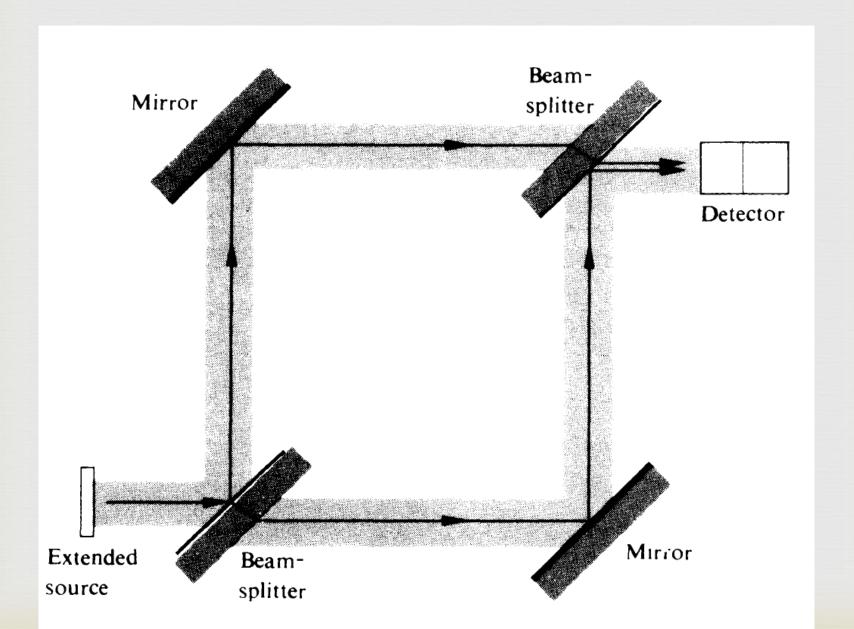
$$2d\cos\theta_m = m\lambda_0$$

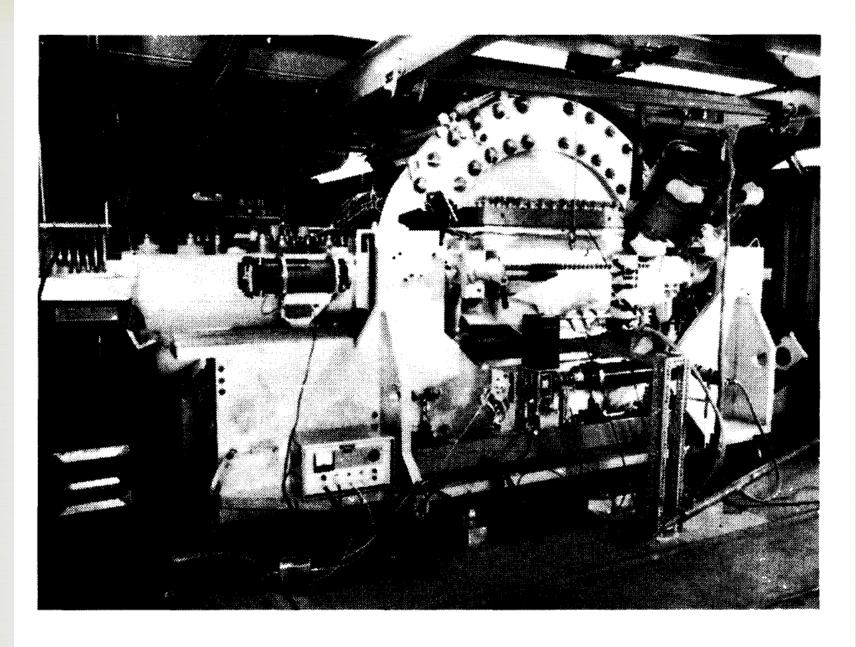
For fixed $\theta=0$

$$2d = m\lambda_0$$
$$d = m(\lambda_0/2)$$

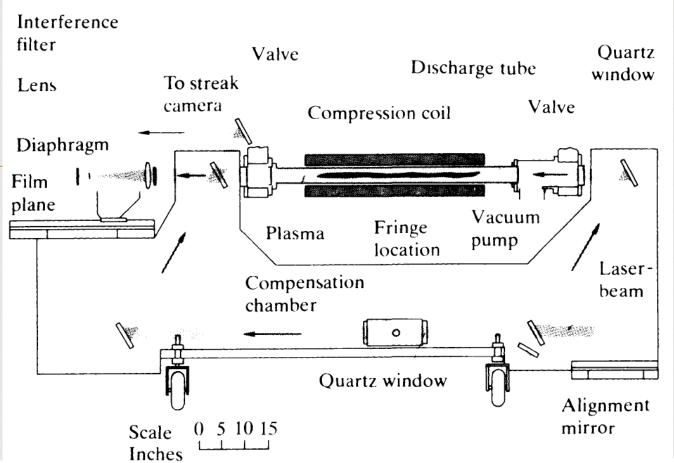
$$\Delta d = \Delta m(\lambda_0/2) = N(\lambda_0/2)$$

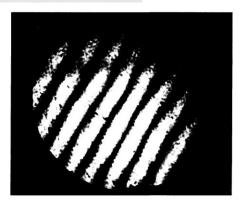
Mach-Zehnder Interferometer





Scylla IV, an early setup for studying plasma. (Courtesy of University of California, Lawrence Livermore National Laboratory, and the Department of Energy.)





Schematic of Scylla IV.

Sagnac Interometer

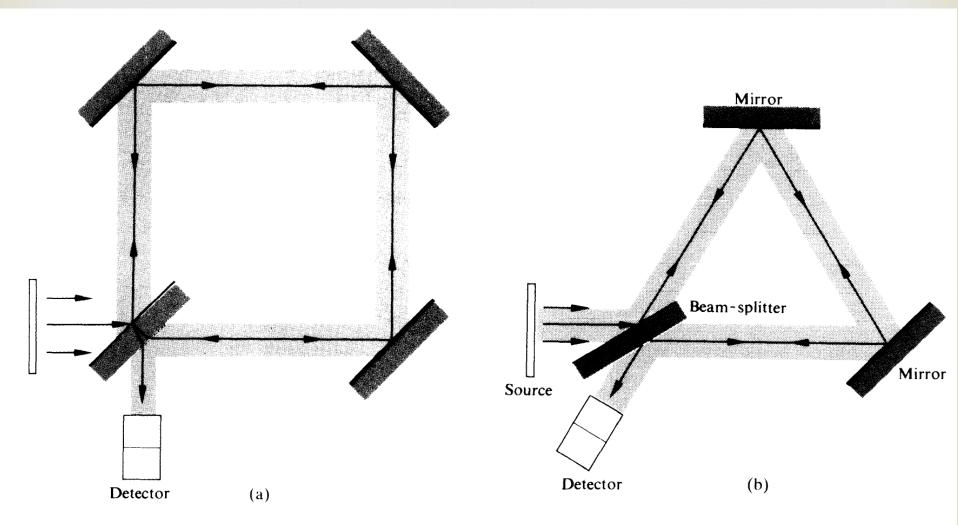
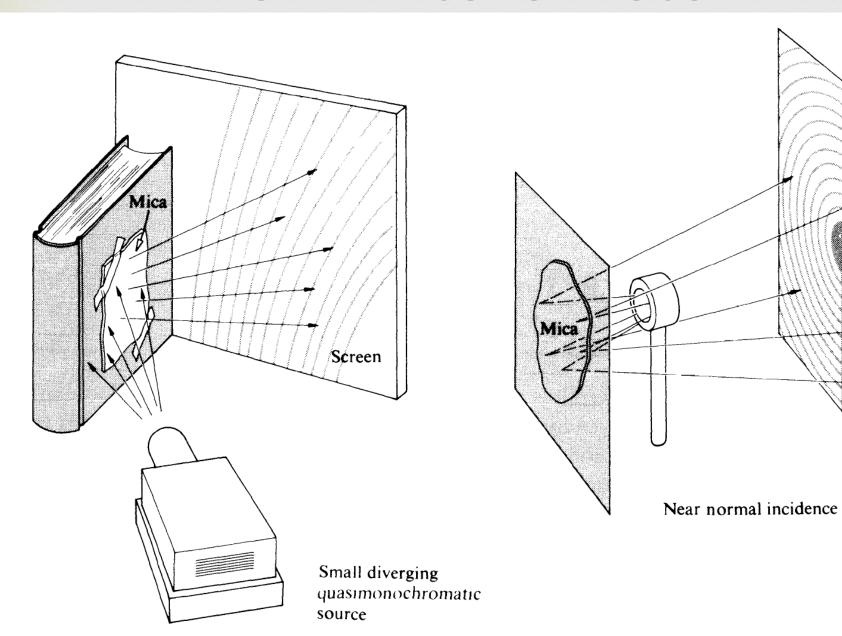


Figure 9.29 (a) A Sagnac Interferometer. (b) Another variation of the Sagnac Interferometer.

Pohl Interometer



Pohl Interometer

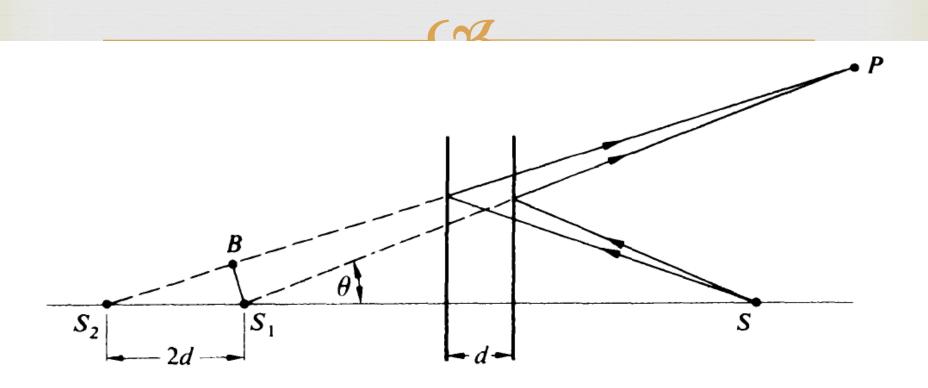


Figure 9.31 Point-source illumination of parallel surfaces.

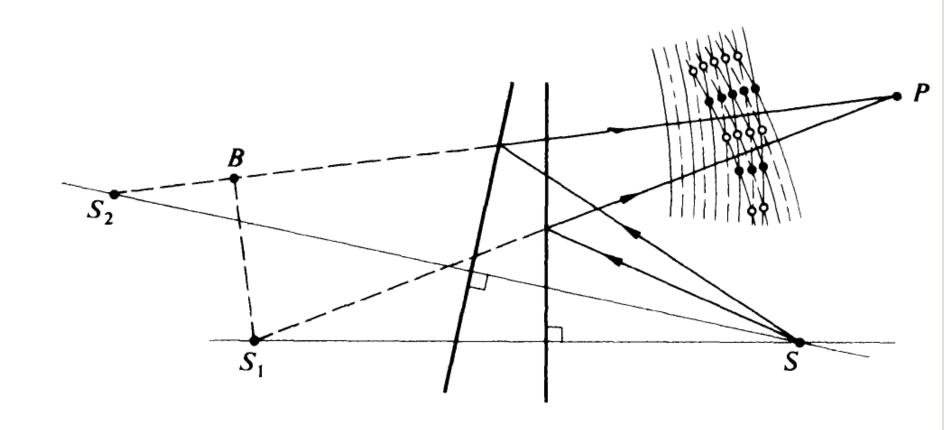
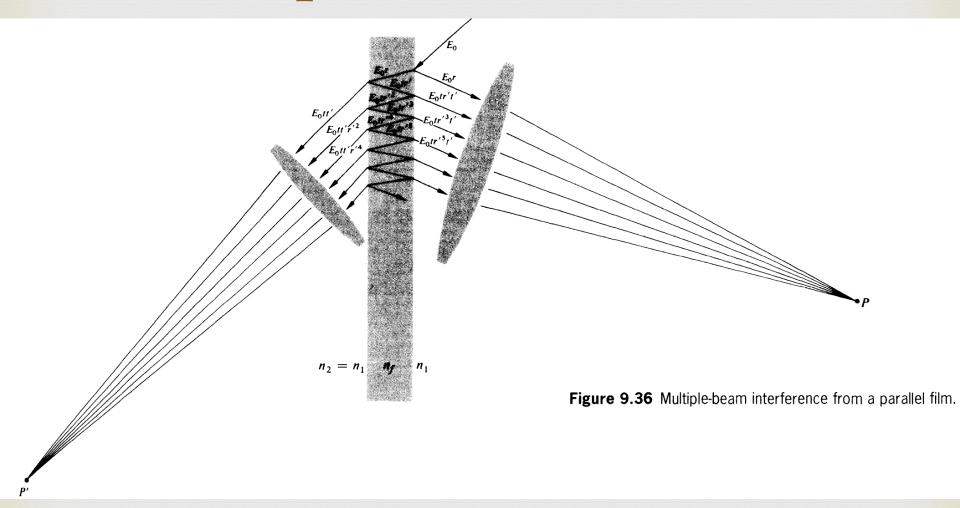


Figure 9.32 Point-source illumination of inclined surfaces.

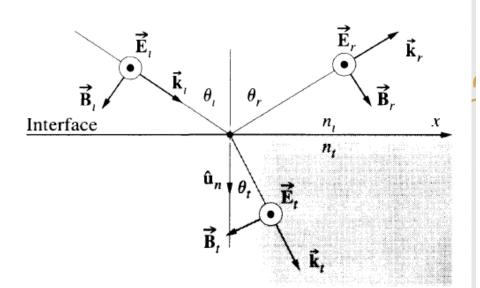
Types and Localization of Interference Fringes

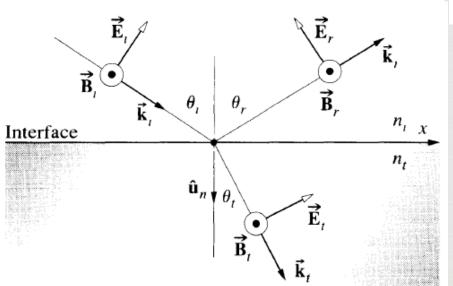
- Real fringes: can be seen on a screen without the use of additional focusing system.
- Virtunal fringes: cannot be projected onto a screen without a focusing system.
- Nonlocalized fringes: 3D (from a point or line source)

9.6 Multiple Beam Interference



Amplitude Coefficients





$$r_{\perp} = -\frac{\sin\left(\theta_{i} - \theta_{t}\right)}{\sin\left(\theta_{i} + \theta_{t}\right)} \tag{4.42}$$

$$r_{\parallel} = + \frac{\tan (\theta_i - \theta_t)}{\tan (\theta_i + \theta_t)} \tag{4.43}$$

$$t_{\perp} = + \frac{2 \sin \theta_t \cos \theta_i}{\sin (\theta_i + \theta_t)} \tag{4.44}$$

$$t_{\parallel} = + \frac{2 \sin \theta_t \cos \theta_i}{\sin (\theta_i + \theta_t) \cos (\theta_i - \theta_t)}$$
(4.45)

$$\theta_i < \theta_p$$

$$n_i < n_t$$
 $\theta_i > \theta_t$

$$r_{\perp} < 0$$
 $r_{||} > 0$

$$n_i > n_t$$
 $\theta_i < \theta_t$

$$r_{\perp} > 0$$
 $r_{||} < 0$

Thin Film $\theta_i < \theta_p$

$$\theta_i < \theta_p$$

$$\Lambda = 2n_f d \cos \theta_t$$

if $\Lambda = m\lambda$.

$$E_{0r} = E_0 r - (E_0 t r t' + E_0 t r^3 t' + E_0 t r^5 t' + \cdots)$$

or
$$E_{0r} = E_0 r - E_0 t r t' (1 + r^2 + r^4 + \cdots)$$

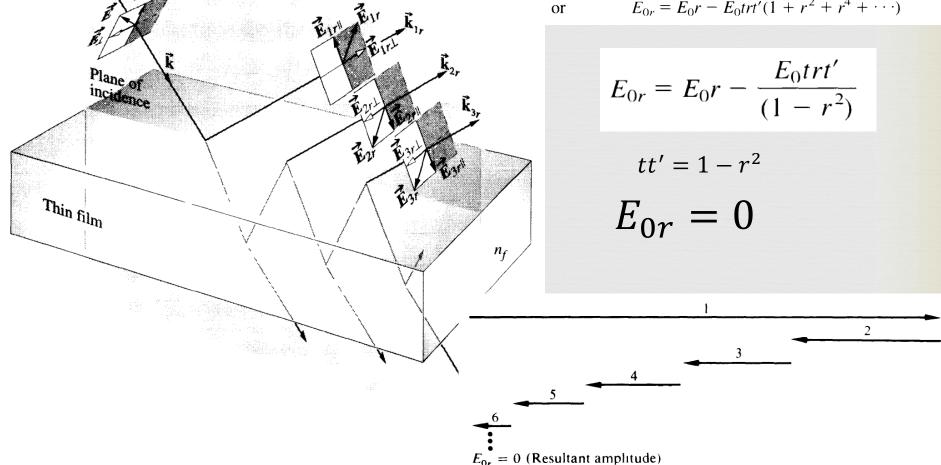


Figure 9.37 Phase shifts arising purely from the reflections (internal $\theta_i < \theta_p$).

Figure 9.38 Phasor diagram.

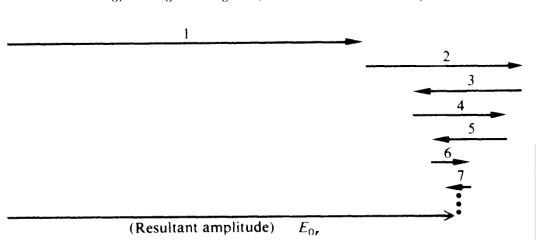
Maximum Reflection: Thin Film

is transmitted. The second special case arises when $\Lambda = (m + \frac{1}{2})\lambda$. Now the first and second rays are in-phase, and all other adjacent waves are $\lambda/2$ out-of-phase; that is, the second is out-of-phase with the third, the third is out-of-phase with the fourth, and so on. The resultant scalar amplitude is then

$$E_{0r} = E_0 r + E_0 t r t' - E_0 t r^3 t' + E_0 t r^5 t' - \cdots$$

$$E_{0r} = E_0 r + E_0 r t t' (1 - r^2 + r^4 - \cdots)$$

or



The series in parentheses is equal to $1/(1 + r^2)$, in which case

$$E_{0r} = E_0 r \left[1 + \frac{tt'}{(1+r^2)} \right]$$

Again, $tt' = 1 - r^2$; therefore, as illustrated in Fig. 9.39,

$$E_{0r} = \frac{2r}{(1+r^2)} E_0$$

Since this particular arrangement results in the addition of the first and second waves, which have relatively large amplitudes, it should yield a large reflected flux density. The irradiance is proportional to $E_{0r}^2/2$, so from Eq. (3.44)

$$I_r = \frac{4r^2}{(1+r^2)^2} \left(\frac{E_0^2}{2}\right) \tag{9.50}$$

That this is in fact the maximum, $(I_r)_{max}$, will be shown later.

General Cas $n_1 = n_2$ Cas

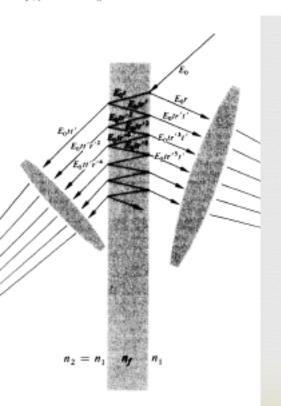
$$\tilde{E}_{1r} = E_0 r e^{i\omega t}$$

$$\tilde{E}_{2r} = E_0 t r' t' e^{i(\omega t - \delta)}$$

$$\tilde{E}_{3r} = E_0 t r'^3 t' e^{i(\omega_t - 2\delta)}$$

:

$$\tilde{E}_{Nr} = E_0 t r'^{(2N-3)} t' e^{i[\omega t - (N-1)\delta]}$$



$$\tilde{E}_r = \tilde{E}_{1r} + \tilde{E}_{2r} + \tilde{E}_{3r} + \cdots + \tilde{E}_{Nr}$$

or upon substitution (Fig. 9.40)

$$\tilde{E}_r = E_0 r e^{i\omega t} + E_0 t r' t' e^{i(\omega t - \delta)} + \dots + E_0 t r'^{(2N - 3)} t'$$
$$\times e^{i[\omega t - (N - 1)\delta]}$$

This can be rewritten as

$$\tilde{E}_r = E_0 e^{i\omega t} \{ r + r'tt'e^{-i\delta} [1 + (r'^2 e^{-i\delta}) + (r'^2 e^{-i\delta})^2 + \dots + (r'^2 e^{-i\delta})^{N-2}] \}$$

If $|r'^2e^{-i\delta}| < 1$, and if the number of terms in the series approaches infinity, the series converges. The resultant wave becomes

$$\tilde{E}_r = E_0 e^{i\omega t} \left[r + \frac{r'tt'e^{-i\delta}}{1 - r'^2 e^{-i\delta}} \right]$$
(9.51)

In the case of zero absorption, no energy being taken out of the waves, we can use the relations r = -r' and $tt' = 1 - r^2$ to rewrite Eq. (9.51) as

$$\tilde{E}_r = E_0 e^{i\omega t} \left| \frac{r(1 - e^{-i\delta})}{1 - r^2 e^{-i\delta}} \right|$$

Phasor diagram

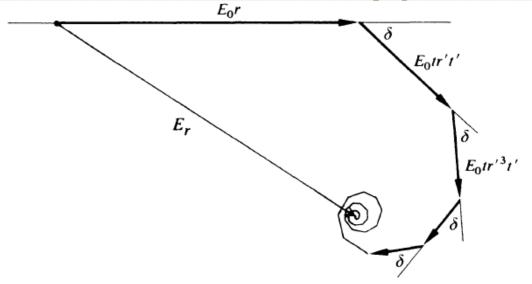


Figure 9.40 Phasor diagram.

The reflected flux density at P is then $I_r = \tilde{E}_r \tilde{E}_r^*/2$, that is,

$$I_r = \frac{E_0^2 r^2 (1 - e^{-i\delta})(1 - e^{+i\delta})}{2(1 - r^2 e^{-i\delta})(1 - r^2 e^{+i\delta})}$$

which can be transformed into

$$I_r = I_i \frac{2r^2(1 - \cos \delta)}{(1 + r^4) - 2r^2 \cos \delta}$$
 (9.52)

The symbol $I_i = E_0^2/2$ represents the incident flux density,

Transmission

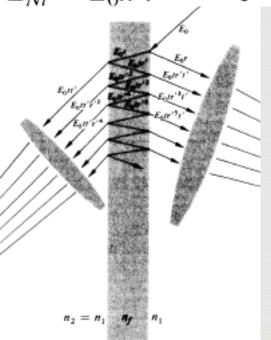
$$n_1 = n_2$$

$$\tilde{E}_{1t} = E_0 t t' e^{i\omega t}$$

$$\tilde{E}_{2t} = E_0 t t' r'^2 e^{i(\omega t - \delta)}$$

$$\tilde{E}_{3t}=E_0tt'r'^4e^{i(\omega t-2\delta)}$$

$$\tilde{E}_{Nt} = E_0 t t' r'^{2(N-1)} e^{i[\omega - (N-1)\delta]}$$



$$\tilde{E}_t = E_0 e^{i\omega t} \left[\frac{tt'}{1 - r^2 e^{-i\delta}} \right]$$

$$I_{t} = \frac{I_{i}(tt')^{2}}{(1+r^{4})-2r^{2}\cos\delta}$$

Multiple Beam Interference

$$I_r = I_i \frac{[2r/(1-r^2)]^2 \sin^2(\delta/2)}{1 + [2r/(1-r^2)]^2 \sin^2(\delta/2)}$$

$$I_t = I_i \frac{1}{1 + [2r/(1 - r^2)]^2 \sin^2(\delta/2)}$$

$$I_i = I_r + I_t$$

$$(I_t)_{\max} = I_i$$

$$(I_r)_{\min} = 0$$

$$(I_t)_{\min} = I_i \frac{(1-r^2)^2}{(1+r^2)^2}$$

$$(I_r)_{\text{max}} = I_i \frac{4r^2}{(1+r^2)^2}$$

Multiple Beam Interference

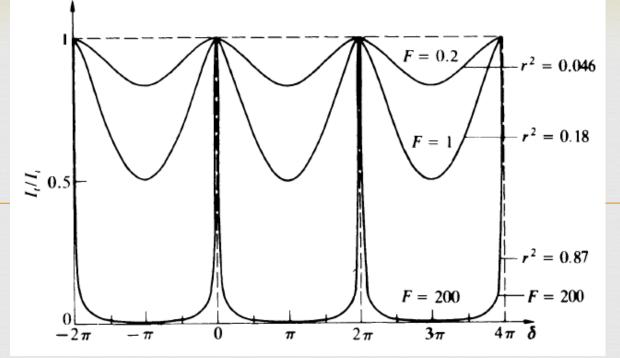
Coefficient of finesse

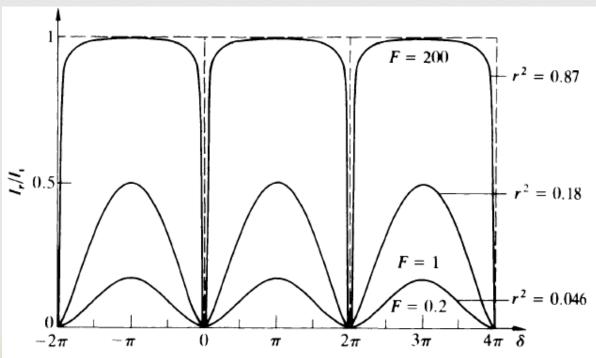
$$F \equiv \left(\frac{2r}{1 - r^2}\right)^2$$

$$\delta = 2k_f d\cos\theta_t = \frac{4\pi n_f}{\lambda_0} d\cos\theta_t$$

$$\frac{I_r}{I_i} = \frac{F \sin^2 (\delta/2)}{1 + F \sin^2 (\delta/2)}$$

$$\frac{I_t}{I_i} = \frac{1}{1 + F \sin^2(\delta/2)}$$





Fabry-Perot Interferometer

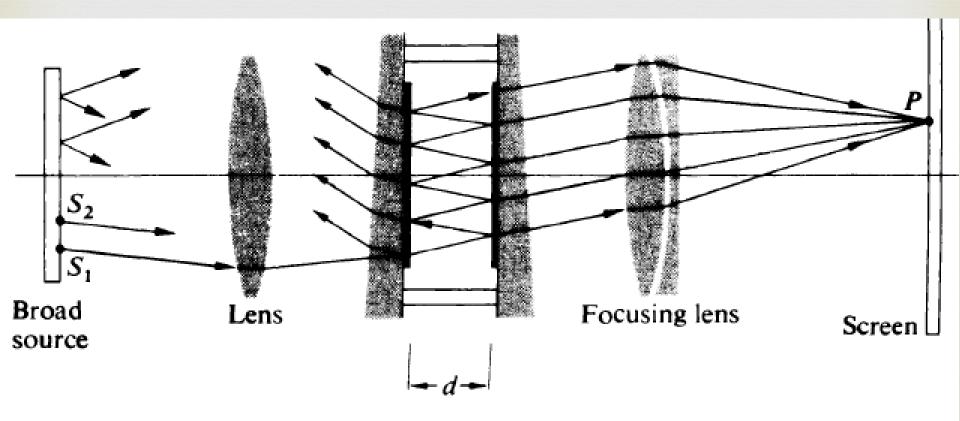
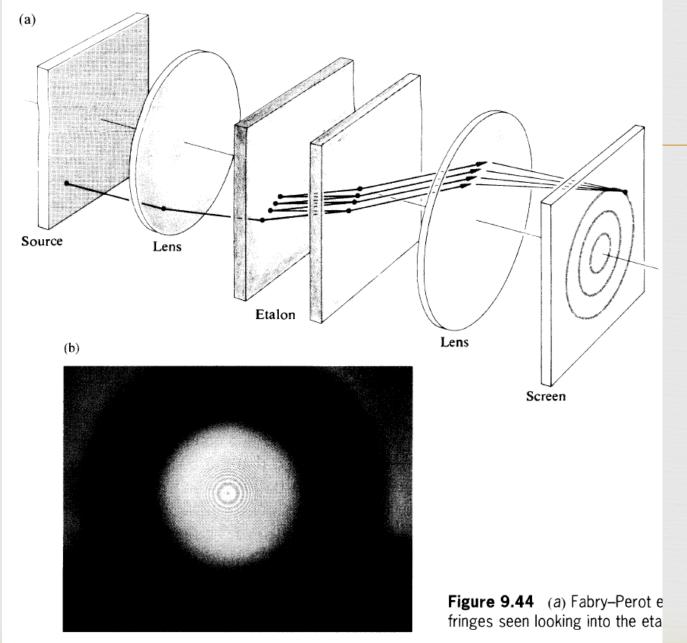


Figure 9.43 Fabry–Perot etalon.

Fabry-Perot Interferometer



Fabry-Perot Interferometer

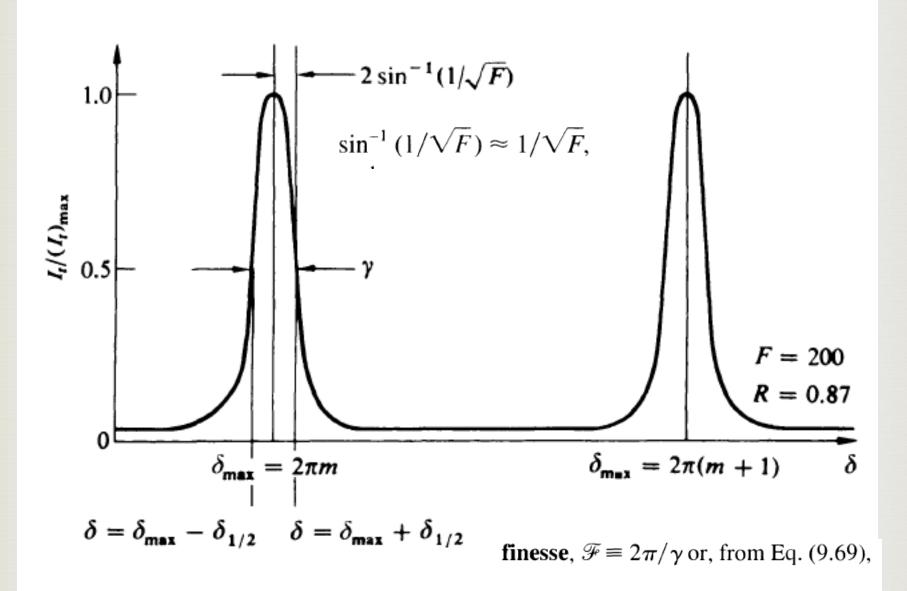


Figure 9.45 Fabry–Perot fringes.

$$\mathscr{F} = \frac{\pi \sqrt{F}}{2}$$