PHYS 3038 Optics
L15 Interference
Reading Material: Ch9.4-6
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Mirrored Interferometers
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Figure 9.24 The Michelson Interferometer. (a) Circular fringes are cen-
tered on the lens. (b) Top view of the interferometer showing the path
of the light. (¢) A wedge fringe pattern was distorted when the tip of a
hot soldering iron was placed in one arm. Observe the interesting per-
ceptual phenomenon whereby the region corresponding to the iron’s tip
appears faintly yellow. (Photo by E. H.)




Haidenger fringes: equal inclination
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Michelson Interferometer

2d cos 8, = mAg
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Mach-Zehnder Interferometer
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Scylla Iv, an early setup for studying plasma. (Courtesy of University of
California, Lawrence Livermore National Laboratory, and the Department of Energy.)
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Schematic of Scylla IV.

Interferogram without plasma. (Photo courtesy Los Alamos National Laboratory.)

Interferogram with plasma. (Photo courtesy Los Alamos National Laboratory.)



Sagnac Interometer
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Figure 9.29 (a) A Sagnac Interferometer. (b) Another variation of the Sagnac Interferometer.



Pohl Interometer
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Pohl Interometer
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Figure 9.31 Point-source illumination of parallel surfaces.



Figure 9.32 Point-source illumination of inclined surfaces.



Types and Localization
of Interterence Fringes

R Real fringes: can be seen on a screen without the use
of additional focusing system.

R Virtunal fringes: cannot be projected onto a screen
without a focusing system.

& Nonlocalized fringes: 3D (from a point or line
source)

R Localized fringes: observable only over a particular
surface (from an extended source)



9.6 Multiple Beam Interference

Figure 9.36 Multiple-beam interference from a parallel film.



Amplitude Coefficients

L sin (f% - E%)
LT in(e + ) (4:42)

tan (6; — 6,)
i tan (6; + 6,) (4.43)

2 sin 9, COs 9,'

= 444
- sin (6; + 6) ( )
2 sin 6, cos 6;
(= 4 — sin O, cos 0, (4.45)
sin (6; + 6,) cos (6, — 6,)
n; < n; 9i > Qt
Interface r <0 Hi 0
n; > ng 0; <0,

TJ_>O T'||<O



Thin Film #<~

A = 2nsd cos 6, if A = mA,

EOI' = Eor - (E()Ii‘f’ + Eofr3f’ + E(}[rf’r’ + )

Eo = Egr — Eotrt’(1 + 72 + 7 + -+ )
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E,, = 0 (Resultant amplitude)
Figure 9.37 Phase shifts arising purely from the reflections

(internal 6, < 6,). Figure 9.38 Phasor diagram.



Maximum Reflection: Thin Film

is transmitted. The second special case arises when A = (m +
DA. Now the first and second rays are in-phase, and all other
adjacent waves are A /2 out-of-phase; that is, the second is out-
of-phase with the third, the third 1s out-of-phase with the
fourth, and so on. The resultant scalar amplitude 1s then

E,, = Eqr + Egtrt’ — Eqtrt’ + Eqtr’t’ —

or Ey = Egr + Egrtt'(1 — 7> + 7t — )
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(Resultant amplitude) £,

The series in parentheses is equal to 1 /(1 + %), in which case

1
Ey = Egr| 1+ ——5
or Or[ (1 +r2)]

Again, 1" = 1 — r?; therefore, as illustrated in Fig. 9.39,

2r
(1+ 7
Since this particular arrangement results in the addition of the
first and second waves, which have relatively large ampli-
tudes, it should yield a large reflected flux density. The irradi-
ance is proportional to £3,/2, so from Eq. (3.44)
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That this is in fact the maximum, (/,)nax, Will be shown later.



General Cas
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This can be rewritten as
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If |+ 7 ""‘5[ < 1, and i1f the number of terms in the series
approaches infinity, the series converges. The resultant wave
becomes
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Inthe case of zero absorption, no energy being taken out of the
waves, we can use the relations|r = —¢|and|tt’ = 1 — rto
rewrite Eq. (9.51) as
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Phasor diagram

Figure 9.40 Phasor diagram.

The reflected flux density at P is then I, = E, E¥/2, that is,

B E{erz(l _ grﬁ)(l _ €+t§)
r 2(] o rze—rﬁ)(l - r2€+15}

which can be transformed into

; 2r%(1 — cos 8)
T+ = 2r%cos S

(9.52)

The symbol I; = E}/2 represents the incident flux density,



Transmission
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Multiple Beam

Interference
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Multiple Beam

Interference
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Fabry-Perot Interferometer
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Figure 9.43 Fabry-Perot etalon.




Fabrv-Perot Interferometer
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Figure 9.44 (a) Fabry-Perot e
fringes seen looking into the eta



Fabrvy-Perot Interferometer
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