Name: _____

PHYS 3033 - Electricity and Magnetism I Quiz 1 Time allowed: 15 minutes 8 Sep 2015

- 1. (a) Use Stokes' theorem to show that $\nabla \times (\nabla T) = \mathbf{0}$ for any scalar field *T*.
 - (b) Use divergence theorem to show that $\nabla \cdot (\nabla \times \mathbf{A}) = 0$ for any vector field \mathbf{A} .
- 2. Consider the vector field $\mathbf{F} = \frac{1}{r^2} \hat{\mathbf{r}}$. Compute the line integral $\int_C -\mathbf{F} \cdot d\mathbf{I}$, where *C* is the straight path starting at (r_0, θ, ϕ) and ending at (r, θ, ϕ) (in spherical coordinates). What is the line integral in the limit when $r_0 \rightarrow \infty$?

PHYS 3033 - Electricity and Magnetism I Quiz 1 Solution

1. (a) By Stokes' theorem, for any *T* and for arbitrary surface *S*,

$$\int_{S} (\nabla \times (\nabla T)) \cdot d\mathbf{a} = \prod_{C} \nabla T \cdot d\mathbf{l} ,$$

where *C* is the boundary of *S* (and is therefore a closed path). By the fundamental theorem of calculus,

$$\oint_C \nabla T \cdot d\mathbf{l} = 0,$$

for any closed path C.

Therefore $\int_{S} (\nabla \times (\nabla T)) \cdot d\mathbf{a} = 0$ for any surface *S*, and hence

$$\nabla \times (\nabla T) = \mathbf{0}.$$

(b) By divergence theorem, for any A and for arbitrary region ζ ,

$$\int_{\mathbf{V}} \nabla \cdot (\nabla \times \mathbf{A}) d\tau = \prod_{S} (\nabla \times \mathbf{A}) \cdot d\mathbf{a} ,$$

where *S* is the boundary of ς (and is therefore a closed surface).

By Stokes' theorem
$$\int_{S} (\nabla \times \mathbf{A}) \cdot d\mathbf{a} = \prod_{\text{Boundary of } S} \mathbf{A} \cdot d\mathbf{l}$$
.

For a closed surface, there is no boundary.

So $\prod_{S} (\nabla \times \mathbf{A}) \cdot d\mathbf{a} = 0$ for arbitrary closed surface *S*.

This implies $\int_{V} \nabla \cdot (\nabla \times \mathbf{A}) d\tau = 0$ for arbitrary region ζ , and hence

$$\nabla \cdot (\nabla \times \mathbf{A}) = 0.$$

2.

$$-\int \mathbf{F} \cdot d\mathbf{l} = -\int_{r_0}^r \frac{1}{r^2} \,\hat{\mathbf{r}} \cdot dr \hat{\mathbf{r}}$$
$$= -\int_{r_0}^r \frac{1}{r^2} \,dr$$
$$= \frac{1}{r} - \frac{1}{r_0}$$

When $r_0 \to \infty$, $-\int_C \mathbf{F} \cdot d\mathbf{l} = \frac{1}{r}$