
Electrodynamics and the 

Maxwell’s equations  
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Inside matter: 

Summary of Chapter 2-6: 
 Electrostatics and Magnetostatics 
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where 



For the set of equations 

to be closed, 

For instance, in linear media,  

constitutive relations. 1
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one has to supply the 

relation between D, E 

and H, M, 

which are called the 

Summary of Chapter 2-6: 
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Summary of Chapter 2-6: 
 Electrostatics and Magnetostatics 

The force a charge q moving with velocity v experiences in a 

region of E field and B field is given by the Lorentz force law: 

 q  F E v B
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In the static cases,  

the continuity equation Since: 

Summary of Chapter 2-6: 
 Electrostatics and Magnetostatics 

0
t





(1) 

 
0

1
0


    J B(2) 

However 

the two curl equations have to 

be modified in  electrodynamics 



Experiment 1: 

A loop of wire partly inside a magnetic field (assume uniform for simplicity) 

moving with velocity v perpendicular to the field. 

Experiment 2: 

A magnetic field partly inside a loop of wire moving to the opposite direction.  

Experiment 3: 

A loop at rest inside a changing magnetic field. 

Electromagnetic induction  
Faraday’s Experiments 

• In the 19th century, Faraday performed a series of 

experiments which showed that in general, the electric 

field is not curl-free. 

Experiment 1: 

A loop of wire partly inside a magnetic field (assume uniform for simplicity) 

moving with velocity v perpendicular to the field. 

Experiment 2: 

A magnetic field partly inside a loop of wire moving to the opposite direction.  

Experiment 3: 

A loop at rest inside a changing magnetic field. 



Experiment 1: 
• A loop of wire partly inside a magnetic field 

(assume uniform for simplicity) moving 

with velocity v perpendicular to the field.  

v I 

B-field 
loop of wire 



Experiment 2: 
• A magnetic field partly inside a loop of wire 

moving to the opposite direction.  

v I 

What can we observe 

in this experiment? 



Experiment 3: 
• A loop at rest inside a changing magnetic 

field.  

I 

charging B-field………… 

What is the conclusion in the 3 experiments? 



Observation 
• In all the experiments, there will be a current flowing. 

• There is a current because there is a force driving the 

charges to move. 

 The electromotive force (emf)     is defined by 

over a closed loop. 

Let f be the force per unit charge.  

  If d



• When there is a driving force, it is a “rule of thumb” that a 

current will be generated which is proportional to f: 

J f.  

conductivity of the material,  

where            , is called the resistivity  
1






• The source of this driving force in the Faraday’s 

experiments has different interpretations though. 

Observation 



Experiment 1: 
• The force is due to the Lorentz force of charges 

in motion  Motional emf.  

v I 

h 

When the loop moves, the charges 

inside experience a force 

 f v B
( pointing upward  

  with magnitude vB )  

only the left side of the loop contributes 

to the emf  
(counterclockwise

as positive) 
v B h 

h 

  If d

x 



Experiment 1: 
• The force is due to the Lorentz force of charges 

in motion  Motional emf.  

• Notice that the emf in this case can be related 

to the magnetic flux through the loop.  

                            inward as positived  B a (inwards as positive) 

• The sign convention of emf and flux has to be 

consistent by right hand rule. 

  



Bhx 

d dx
Bh vBh

dt dt
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dt
 

 

In this particular case, obviously  

( where x is the portion of the length of  

  the loop inside the field. ) 

The relation is hence 

      

which is called the 

Hence 

flux rule  

d dx
Bh vBh

dt dt
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Bh vBh

dt dt
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valid in general for a loop 

moving in a non-uniform B-field 



Experiment 2,3: 
Imagine an observer in experiment 1 moving with velocity v.  

• A current and hence electromotive force will still be 

observed.  

• there should be no Lorentz force due to magnetic field 

since the loop is not moving. 

• it can be concluded that 

What he will observe is exactly that in experiment 2 there is  

a loop at rest with a magnetic field moving to the right. 

there is an electric field 



The flux rule is still  

correct. 

Faraday’s law: 
• Faraday proposed that a changing 

magnetic field will induce an electric field. 

However, this time  

the driving force is  

due to an induced  

electric field. 

Hence 
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Faraday’s law: 
Note that the minus sign denotes 

what is called the Lenz’s law : 

Nature abhors a change in flux!  

+ve 

+ve 
e.g., Flux increases 

 negative current 

E negative 

 produces negative flux 

 opposes the change in flux 



• The induced electric field forms closed 

loops and is divergence free.  

• Therefore, the total electric field due to 

charges and changing magnetic field 

satisfies   

Faraday’s law: 
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Maxwell’s Correction 
• With the Faraday’s law, the set of equations now reads 
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Maxwell’s Correction 
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If you study them carefully, you will realize that something is 

wrong!!   

• However, from the continuity equation: 

which is in general non-zero in electrodynamics. 

• Look at the fourth equation, and take divergence of both 

sides: 



Maxwell’s Correction 
• In addition, consider the Ampere’s law in integral form: 

encI

• The current enclosed by C is not well defined since 

different choices of S may yield different  

0 J• This is, of course, also due to the fact that 

in general.  

0 0 enc

C S

d d I     B l J a



 Consider the following set up of charging up a capacitor:  

• When the capacitor is being 

charged up, a current is 

flowing in the direction shown 

• Positive and negative charges 

are being accumulated on the left 

and right plate of the capacitor, 

respectively. 

Maxwell’s Correction 

• In between the plates, the electric field is increasing, 

but there is no current. 



Maxwell’s Correction 

encI I

enc 0I 

encI

Consider the amperian loop C, which is assumed to be “flat” 

for simplicity. If Ampere’s law is applied on the loop, and the 

flat surface S is used to calculate  
one obtains 

However, if the curved surface S’ is 

chosen, which does not intersect with 

the wire, then   

C 

S 

S’ 



Maxwell’s Correction 

Notice that from the continuity equation and Gauss’ law:  

Hence, we know that something is missing on the right 

hand side of the Ampere’s law, which, together with       , 
0 J

gives a zero divergence. 
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Maxwell’s Correction 
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The second term is sometimes called the displacement 

current: 

Though it is misleading since it has nothing to do with 

flowing charges. 

Maxwell proposed that the missing term in the Ampere’s 

law is  

0 0 0d I d
t

  


   
 enc

E
B l a

Maxwell’s 

correction 

terms 



Maxwell’s Correction 
• By adding this “maxwell’s correction term”, the conservation 

of charges is restored.  

• The ambiguity in the definition of current enclosed is also 

solved by including the displacement current.  

• It turns out that it is the sum of real current and displacement 

current that is unchanged no matter what surface one 

chooses. 

• Also note the parallelity between the modified Ampere’s law 

and the Faraday’s law,  

A changing electric field induces a magnetic field 

A changing magnetic field induces an electric field 



Maxwell’s Correction 

17

0 0 10  

• Hence there are two sources of magnetic field, viz.,  

J 0
t
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E
• The second contribution               is difficult to observe as   

which is very small, unless the electric field is changing 

very rapidly.  

• Maxwell derived this term relying solely on mathematics.  

• It was later verified experimentally by the observation of 

electromagnetic waves.  



Maxwell’s Equations  

The set of four equations now becomes 
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Electromagnetic Waves in Vacuum 

• The Maxwell’s equations predict the existence of 

electromagnetic waves.  
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• In vacuum, the Maxwell’s equations read 



Electromagnetic Waves in Vacuum 
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Taking the curl on both sides of the Faraday’s law, we have 

By the Ampere’s law, 

By Gauss’ law 



Electromagnetic Waves in Vacuum 
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Similarly, by taking the curl on both sides of the Ampere’s law, 

we have     

By Faraday’s law 

Since  

hence 
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Therefore, both the E field and B field satisfy the wave 

equation and admit solution of propagating waves. 

cf.  
  speed of EM wave 
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Maxwell’s Equations Inside Matter  
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• Inside matter, there are in general polarization P 

and magnetization M. 

b  P,where 

Hence 

• The Gauss’ law and the Ampere’s law can be re-formulated.  

• For the Gauss’ law, the total charge is the sum of free 

charges and bound charges: 

0 D E P,where 
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• In magnetostatics, we have also learned that on the 

right hand side of the Ampere’s law,  

b J Mwhere 

• the total current consists of two contributions, viz., free 

currents and bound currents due to magnetization.  

• Hence, you may propose that the Ampere’s law 

in electrodynamics should be 

Maxwell’s Equations Inside Matter  



Maxwell’s Equations Inside Matter  
• However, in electrodynamics, there is another contribution 

to the total current that we missed in the above equation. 

pJ

• This means that the charges inside the electric dipoles 

are moving, giving rise to a current which is called the 

polarization current  

• In electrodynamics, P varies with time in general.  



Maxwell’s Equations Inside Matter  

b P 

da

b b

               

P 

Consider a small piece of matter with polarization P, as 

shown below: 

We know that there will be surface bound charges at both 

ends of density   



da

b b
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Maxwell’s Equations Inside Matter  
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When P varies, the net effect is that a current dI is flowing 

in the direction of P.  

Hence, the volume current density is 

The magnitude of the current is 



Maxwell’s Equations Inside Matter  
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Taking into account the polarization current, the Ampere’s 

law inside matter should be 
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The two remaining equations 

involve no source and are hence unchanged inside matter. 

In conclusion, inside matter: 
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Maxwell’s Equations Inside Matter  

The equations are providing the constitutive relations, which 

relate polarization to the E field and magnetization to the B field. 
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e.g., for linear media, 



Electromagnetic Waves in Matter 
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• Inside matter with no free 

charges and currents, the 

Maxwell’s equations become 

• If the medium is linear, then 

the equations reduce to 

Notice that these are just the Maxwell’s equations in vacuum under the 

transcription  0 0,      

. 
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Electromagnetic Waves in Matter 
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Hence, the E field and B field satisfy the wave equation 

     

and the speed of light becomes 



Electromagnetic Waves in Matter 
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In other words, the speed of light in matter is reduced by a 

factor 

which is called the refractive index. 

K : dielectric constant 

0  0 , and  For most materials,  

v cHence  


