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Force on an ideal magnetic dipole with dipole moment m in 

a B-field B is given by  


A simple proof of this is to consider a square current loop 

with side-length , as shown below 
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0

By considering the forces on the 

four sides of the square, we can 

prove that, when 

(Proof in assignment) 
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BmN 

The torque on  in a uniform magnetic field   is given by 


Consider a rectangular loop with sides 

a, b and making an angle    with B.  



Without loss of generality, let B point 

along the z-direction and the loop is 

tilted from the z-axis towards the y-axis 

by an angle   . 

Proof: 
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In vector form:                 BmN 



Magnetic Field in Matters  

Paramagnetism 
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Inside matters, there are a lot of tiny currents due to the 

electrons orbiting around the nuclei and intrinsic spins. 

BmN The torque, , however, is non-zero & tends to align  

 m in the same direction of B 

This effect is called paramagnetism.  

What is Paramagnetism? 

The scale of these small “current loops” are so small 

that the applied B-field can be considered uniform. 

Bm 

  0 BmF

 is constant and so  In a uniform B-field,  



Diamagnetism 

Magnetic Field in Matters  



What is Diamagnetism? 

This effect is called diamagnetism. 

The induced net magnetic dipole moment is opposite to the 

field. 

 m B
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where R is the radius of the orbit. 

For electrons orbiting around nuclei, in addition to the 

paramagnetic effect, there is another less significant effect 

due to an external B-field.  

A full, rigorous treatment of this effect requires 

quantum mechanics. Here is a qualitative analysis: 

Let the speed of an orbiting electron be v, then the period 

Effect of Magnetic field on Atomic Orbits 
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This yields a steady current 

The orbital dipole moment is therefore 
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Then, in addition to the electric force 

between the electron and the nucleus, 

there is a magnetic force.  

Suppose now a B-field zB ˆ B is applied.  

In the absence of the B-field, the centripetal 

force is contributed by the electric force 

alone, so 

B 
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With the magnetic field, the velocity of the 

electron is changed from v to    , so that 

Let  
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Therefore, the electron speeds up or slows down, 

depending on the direction of the applied field.  
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Assume that   is so small that the second-order term 

can be ignored, then 

0B B, i.e.  is along the When 

z-direction, it speeds up. 

0B B, i.e.  is along the When 

-ve z-direction, it slows down. 
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Ferromagnetism 

Magnetic Field in Matters  



What is Ferromagnetism? 

• “Forzen in” magnetic dipoles 

• Not due to external fields, but sustained by 

interaction between nearby dipoles 

• Quantum mechanics  Dipoles “like” to 

point in the same direction as their 

neighbors. 

• Emphatically non-linear 



Magnetization 

Magnetic Field in Matters  



MThe magnetization of an object,     , is defined as the 

amount of magnetic dipole moment per unit volume 

M Magnetic dipole moment per unit volume.  

What is Magnetization? 



The Field of a 

Magnetized Object 

Magnetic Field in Matters  
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The vector potential A of a single ideal 

magnetic dipole moment m is  

So, for a magnetized object with 

magnetization M  



Similar to the case in electric polarization, the potential can 

be re-written in another form which gives better physical 

interpretation.  
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Consider the second term in the integral. We shall proof 

later that 

where S is the surface of the object. 

n̂ adwhere    is the normal unit vector of the area element     . 
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The potential is equivalent to that due to a volume current 

density     and surface current density      , i.e., 

where  

is the volume bound current density 

and  

is the surface bound current density. 
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To prove:  

Consider a vector field v and a constant vector c . 
By divergence theorem, 

where we have used the vector identities: 
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Example:  

Find the magnetic field of a uniformly magnetized sphere.  
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For r >R , 

where  

is the total dipole moment of the sphere.  

It can be shown that 

(supplementary notes) 
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So, outside the sphere, the vector potential, and hence the B-

field, is exactly the same as if all the dipole moments were at 

the center, giving rise to an ideal dipole  

Accordingly, the B-field outside the sphere is  

at the origin. 



It can be shown that 

(supplementary notes) 
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Since M is a constant vector, 
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Physical Interpretation 

of Bound Currents 

Magnetic Field in Matters  



Consider a small area element on the surface of a magnetized 

object with length b and width t. 

sint

Consider a very small volume element 

as shown above, with length a,     

width b and thickness          . 

The region is so small that M can 

be taken as constant.    

There are tiny current loops inside the volume due to 

magnetization. 



Iabm 

sinMabtIab 

sinMtI 

Inside the volume, the current at a point due to adjacent loops 

cancel each other.  

where I is the surface current. 

The net result is a current flowing on the surface.  

The magnetic dipole moment is therefore 

But the net dipole moment must be the same as that of the 

total contribution of all the dipoles inside the volume. 
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By the definition of surface current density, 

)sin( MtI 

Physical Interpretation of volume bound current: 

When M is not uniform, the current carried by adjacent 

loops cannot cancel each other. 

For example, consider the x-component of the currents.  

Since Mx is responsible for currents flowing on the plane 

parallel to the y-z plane, we need not consider Mx 



Since Mx is responsible for currents flowing on the plane parallel 

to the y-z plane, we need not consider Mx 
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If  

If Mz is non-uniform in the y-direction, i.e. 

the current on the surface of the two adjacent volume elements 

are of different magnitudes and cannot cancel each other 

Similarly,  dzdyyMdyyI z )()( 

. 
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 By definition of volume current density, 

The net current flowing in the x-direction is 



The variation of      in the z-direction can also give rise to a 

current in the x-direction.  
yM
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By definition of volume current density, 

 

.  

The net current flowing in the x-direction is 
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Similarly, one can prove that 

Taking into account the two contributions, 
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The Auxiliary Field H 
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Inside matters, 

By Ampere’s law, 

J

fJ

bJ

:   Total current density 

:   Free current density 

:   Bound current density (due to magnetization) 



MBH 
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1



fJH 

encfd  H l I

Define the H-field, 

(Ampere’s law of H)  

In integral form, 

encfIwhere   is the free current enclosed. 



A long copper rod of radius 

R carries a uniformly 

distributed (free) current I .  
 

Find H inside and outside 

the rod. 

Example: 

R 

I 



The argument is similar to that of a solenoid.  

Answer: 

First, the H field has no radial component. 

And the field depends only on s, but not on z and    . 



)()( bHaH zz  0,  ba

0 zH

In addition, if one considers the 

amperian loop 1, it can be shown 

that Hz is constant.  

However, we know that  H = 0  at infinity,  

φ̂Therefore, the H field only has the     -component.  

This is true no matter where the 

loop is located, because unlike 

the case of a solenoid, the  

current is now flowing in the  

z-direction and loop 1 always encloses no current. 
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Now consider the circular amperian 

loop 2 coaxial with the axis of the rod. 

By Ampere’s law, 

For s > R, 

For s < R,  
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Since M is unknown, the B-field inside the rod cannot be 

determined. However, outside the rod,   

Rs ,for  
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fJH  JB 0Note, that although looks similarly to 

0 BHowever,  while,   

Both   and  

 have been employed to determine the B-field.  

It is not valid to perform the simple substitution, 

,which may not vanish. 
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For some materials, the magnetization is directly proportional  

to the applied field. 

BM kLet               , 

 i.e., M is also proportional to H. 
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By convention, the magnetic susceptibility   is defined by, 

)1(0 m where  is called the permeability of the material 

Recall that 0  is called the permeability of free space  
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 is called the relative permeability  Besides, 
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Note: Recall that we cannot simply substitute 

MH Since                            may be non-zero, 

In linear media, 
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It seems that the substitution becomes possible.  

In fact, this is true if the entire space is filled by a single medium.  

In other words,  

may be non-zero. 

  is position dependent, then However, if  

  is constant in the entire space. 



For example: 

In this case, we have to match the boundary conditions. 

0 H on the boundary!!! 



Boundary Conditions  
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fKConsider a surface with free current density  

Consider a pillbox Gaussian surface as shown. 

or in integral form, 

Since 

we have, 
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In particular, if  

then 

In linear media,  

At the interface of two linear media, 


