
Electric Fields inside 

Matter 



• Inside a medium, unlike in vacuum, there 

are a lot of charged particles, e.g., 

electrons, protons, etc. 

 

 

 

 

• In principle, matter is just a form of source 

distribution in vacuum, and we can apply 

what we learned to obtain the fields, 

provided that the r due to matter inside 

the medium is known 



• Note, that unlike free source distributions, 

the sources inside matter are due to 

objects with atomic dimensions, which are 

very small compared to macroscopic 

length scales 

• Hence one can use the multipole 

expansion and keep only the leading order 

term 



• For the electric field, because the atoms 

and molecules carry no net charge 

(monopole moment), hence the leading 

order term is also the dipole term 

• This makes it possible to consider matter 

as consisting of a large number of pure 

electric dipoles 
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Electric Fields in Matter 

Effect of External Field on Matter 



F+ 

Force and torque on a dipole in external E field: 

External force:  
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Force and torque on a dipole in external E field: 

External force:  
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Force and torque on a dipole in external E field: 

External force:  
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In particular, in a uniform E field,  F = 0. 
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Force and torque on a dipole in external E field: 
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Let the position vector of the center of the dipole, O,  be r.  

The torque about the origin is 

  

Torque: 

Force and torque on a dipole in external E field: 
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0d  ,  E E EFor an ideal dipole,               and   

which is the E field at O 

   N r F p E
Therefore, 

Note that there is torque even when the field is uniform 

and F = 0: 

In addition, the torque about the center is always 

even in the case of non-uniform fields. 



• The torque is zero when p is pointing at the same 

direction as E, or in the opposite direction. 

• When p is parallel to E, the dipole is in stable 

equilibrium. 

• When p is anti-parallel to E, it is unstable. 

Therefore, the torque tends to align the dipole with the 

electric field.  

Torque about center: 

 N p E



The energy of an ideal dipole p due to the torque exerted 

by the electric field is:  

U   p E



When an external E field is applied on a dielectrics, 

which originally shows no macroscopic dipole moment, a 

net dipole moment can be observed macroscopically.  

Macroscopic dipole moments 

created by external E field: 

There are mainly 2 different mechanisms giving rise to 

the polarization observed: 

1. Induced dipoles  

2. Alignment of polar molecules 



1. Induced dipoles 

• Atoms or molecules with no dipole 

moment originally. 

• Applied E field push the nuclei and the 

electron clouds in opposite directions. 

• Creates net dipole moments. 

 



The dipole moment induced is: 

• along the direction of the applied field 

• with magnitude proportional to that of the 

field when the field is weak 

In other words, 

p E

atomic polarizability  



2. Alignment of polar molecules 
• Some molecules possess permanent dipole moments. 

 

 

 

• The applied field gives rise to a torque  

 

 

 

 

 

• The torque tends to align the dipoles with E until the 

torque = 0 and the energy U = –p．E is minimum. 



To a first order approximation, we also 

assume that the dipole moment is 

•  with magnitude proportional to that of the  

   field when the field is weak 



Polarization 

 dipole moment per unit volumeP

•  The polarization, P, is defined by the dipole  

   moment per unit volume: 



A primitive model for an atom consists of a point nucleus (+q) 

surrounded by a uniformly charged spherical cloud (-q) of 

radius a. Calculate the atomic polarizability of such an atom. 

Example: 
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In equilibrium, the force on the nucleus exerted by the 

external field and the uniformly charged sphere must cancel. 

where v is the volume of the atom. 
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. So, 

Recall: the magnitude of the electric field at a distance d 

(d<<R) from the center of a uniformly charged sphere, with 

total charge q,  

is  



Electric Fields in Matter 

The Field of a Polarized Object 
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Consider an object with polarization P. Recall that the potential 

of a pure dipole p is 

        

The potential produced by this object is therefore 

       

where   is the volume of the object. 
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By divergence theorem, the first integral can be turned into 

a surface integral over the surface of the object, S: 

So, 
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The field is the same as that of surface bound charges b 

on S and volume bound charges rb in V, with 

and 

i.e. 
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We derived the expressions for the bound charges 

mathematically. They are not just mathematical tools. 

Physical interpretation of bound charges: 

They are physically real. 

What are bound charges??? 



Consider a very small volume element as shown below, 

which is small enough such that P is uniform 

Surface bound charges: 



The positive charges at the head of the dipoles cancel with 

the negative charges at the tail inside the volume, except on 

the surfaces, where there are no other positive or negative 

charges to cancel them.  

Surface bound charges: 

cancel 
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P
A

q
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Let the charge be +q and –q   

Then,  

Therefore,  

Surface bound charges: 

p = 

q = P ·A 



If the surface is not perpendicular to P 

Surface bound charges: 

The charge q will still be the same  
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Volume bound charges: 

If there are ‘sources’ or ‘sinks’ of P,  there will be 

negative and positive charges accumulated in a small 

volume element enclosing the point: 

0 P 0 P
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By definition, 

You can check that this is also true when  0 P

Volume bound charges: 

be some positive charges on the surface   

of the sphere, leaving equal amount of 

negative charges accumulated inside.  

     

For example, when               , there will 0 P

The amount of charge on the surface is 
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A physical way to look at the last example is to consider the 

uniformly polarized sphere as two uniformly charged sphere 

displaced by a distance s.  

Example: 

+ – s 

Let the charge carried by the two 

spheres be q and –q, with density 

and       , respectively. Then  

r
r

rP s and 
34

3
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The E field due to a uniformly charged sphere is  

where r is the vector pointing from the center to the 

observation point  
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Outside the spheres, the field due to the positively charged  
 

sphere is the same as that due to a point charge  

at the center. And similarly for the field due to the negatively 

charged sphere.  

Therefore, the field outside is the same as that due to a 

dipole p = qs: 
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The Electric Displacement 
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Consider Gauss’s Law in the  

presence of a dielectric: 

:totalr  Total charge density 

:fr  Free charge density 

:br  Bound charge density 
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Then, 

electric displacement D 

Integral form:  

enc
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Example: 

A long straight wire, carrying uniform line charge density    , 

is surrounded by rubber insulation out to a radius R. Find 

the electric displacement. 
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E PInside the rubber,   is unknown. Have to know   first.  
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Boundary Conditions of D: 

Consider a surface with surface charge density  

aboveD

belowD

The surface charge may be due to bound charges and 

free charges:  
bf  
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belowabove
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Since  encfda Q  D

where       is a unit normal vector pointing from “below” to 

“above”. 
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0P Since                    in general, so D is not curl free in general, 

and there is no “potential” for D. 

fr D

0

r
 EAlthough   is similar to  

there is no “Coulomb’s law” for D  



Linear Dielectrics: 

EP e 0

In many situations, the polarization is proportional to the 

E-field under the weak-field condition. Define 

 

Materials obeying this relation are called linear dielectrics. 

electric susceptibility 
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Define,  

Permittivity of the material 

Permittivity of 

free space  
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Dielectric constant:         

For linear dielectrics, 

0frTherefore, if  

0frIn other words, all bound charges are on the surface if  

0br  



Example:  

A metal sphere of radius a carries  

a charge Q. It is surrounded, out  

to radius b, by linear dielectric  

material of permittivity     .  
 

 

 

Find the potential at the center 

(relative to infinity).  



a 

b 



Solution:  

By Gauss’s law,  
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The potential at the center 
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and 

Solution:  



Example:  

A 
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Dielectric 

f

f

A parallel-plate capacitor is filled with insulating material of 

dielectric constant K. What effect does this have on its 

capacitance?  
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Boundary Conditions in Linear Dielectrics: 

Consider the interface of two dielectric media 
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0fIf            , the normal component of D 
is continuous: 
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To determine the magnitude of the 

electric field, 





Energy in Dielectric Systems:  

Consider the energy required to construct the system by 

moving free-charges to their final position, a bit at a time, 

and allowing the dielectrics to respond accordingly.  
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if the volume integral includes the entire space. 

ED For linear dielectrics,  

For an infinitesimal E! 


