
Electrostatics 



What is the force exerted on a 

test charge Q, by some source 

charges                  ?  1 2 3, , ,q q q
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Principle of superposition: 

In general, the force depends not only on the position 

of q, but also its velocity and acceleration. 

. 

The interaction between any two charges is completely 

unaffected by the presence of others. 

. 

Electrostatics: 

The source charges are stationary. . 



Electrostatics 

Coulomb’s Law 



What is the force on a test charge Q 

exerted by another charge q at rest 

at a distance    ?  r

r

Fixed source 

charge 

test charge 

 F = ??? 
q 

Q 



• The direction of the force is along the line joining the 
two charges, being either repulsive or attractive.  

 

• The charges can be divided into two separate groups, 
called positive (plus) and negative (minus).  

 

• Like charges repel each other while the forces 
between unlike charges are attractive.  

Experimental facts:  



• The magnitude of the force is proportional to the 

product of the charges (principle of superposition) 

and inversely proportional to the square of distance. 

 

Experimental facts:  
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Units: 
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Gaussian (cgs):  

SI (mks):  

  We shall use SI units. 

Definition: The amount of charges flowing through a 

wire in 1 second when the current is 1 Ampere (A), 

which will be defined later. 

Unit of charge: Coulomb (C) 
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Coulomb’s Law:    

Permittivity of free space  
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Electric Field: 

1 2, , nq q q
From the principle of superposition, for a set of point 

charges 
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• Charges along a line with linear charge 

density 

 

Continuous charge distributions: 
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• Charges on a surface with surface charge 

density  

 

Continuous charge distributions: 
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• Charges fill a volume with volume charge 

density 

Continuous charge distributions: 
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Find the electric field a distance z from 

the center of a spherical surface of 

radius R, which carries a uniform charge 

density  

Example: 
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ˆˆz R z rr

2 2 2 2 cosR z Rz   r

Without loss of generality, let’s assume that the 

observation point is on the z-axis for simplicity. 

Hence  

and, 
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From symmetry, the E-field is along 

the z direction 
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(Refer to the supplementary notes for details) 
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Electrostatics 

Gauss’s Law 

 



 

• Flux of E through a surface S:  

The surface integral of E over S 

 

S 

• Field lines: Connect the arrows of the E field vector 

 

E
S

d   E a

Gauss’s Law in Integral Form 

E 

da’ 



Consider the divergence of E-field at a point r. To 

evaluate the divergence, one may consider a 

close surface S enclosing a small region V 

including r. 

Gauss’s Law in Differential Form 
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The divergence of E-field is given by 

However, from Gauss’s Law in integral form: 

Hence, 

which is the Gauss’s law in differential form.  

The right hand side is just the volume charge density 

by definition. Hence, 
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Notice that one can also obtain the same result by  

using Dirac Delta function: 
 

From Coulomb’s Law, 

 

If we take the divergence of both sides about r (not r’),  

we have 

 

since 
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Application of Gauss’s Law 

 Gauss’s Law (integral form) is extremely powerful in 

computing the electric field when the system exhibits 

some kind of symmetries, and with the suitable 

choice of Gaussian surfaces: 

Spherical symmetry  

Cylindrical symmetry  

Plane symmetry  



 Spherical symmetry: Spherical Gaussian surface 

concentric with the center of rotational symmetry. 

 Cylindrical symmetry: Cylindrical Gaussian surface 

coaxial with the axis of rotational symmetry. 

 Plane symmetry: “Pillbox” Gaussian surface bisected 

by the surface. 



E field inside and outside a charged 

solid sphere with radius R and charge 

density   r , which depends on r only. 

There is spherical 

symmetry in this 

problem. Consider 

a concentric 

Gaussian surface S 

with radius r. 

S 
r 
 

 

R 



Due to symmetry, the E field on the Gaussian surface 

is along the radial direction, i.e., 

ˆEE r

By Gauss’s Law, if r > R, 
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The situation is exactly the same as if the total charge, 

q, were located at the center. 

For r < R, 
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where V is the volume enclosed by S. So 

 

 

2 2

0
0

2

0

2

0

1
4 4

41
ˆ ˆ

4

r

r

E r r r dr

r r dr
E

r

  


 



   

  
 




E r r



The situation is exactly the same as if the charge 

enclosed by S were located at the center and the 

charge outside S gave zero contribution. 
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In particular, for uniform charge distribution, 



E field at a distance s from a line 

charge with linear charge density  
There is cylindrical symmetry in this problem. 

Consider a cylindrical Gaussian surface coaxial 

with the axis of symmetry, with radius s and 

length l. By symmetry, 
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Therefore, one only has to evaluate the flux through 

the curved surface of the Gaussian cylinder. 



E field inside and outside an infinite long 

cylinder with radius R carrying a charge 

density   s  which depends on s only. 

 
There is cylindrical symmetry in this problem. 

Consider a cylindrical Gaussian surface coaxial with 

the axis of symmetry, with radius s and length l. By 

symmetry, 

ˆEE s



Therefore, one only has to evaluate the flux through 

the curved surface of the Gaussian cylinder.  
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If s > R, 



i.e., it is the same as the case of a line charge with 

linear charge density 
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If s < R, 
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i.e., it is as if the charges outside the Gaussian surface 

gave no contribution to the E field. 



In particular, for constant  
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An infinite plane carrying a uniform 

surface charge density 

Consider a “Gaussian pillbox” extending equal 

distances above and below the plane.  

Let the area of the surface parallel to the plane be A. 

There is plane symmetry in this problem. 

E 

E 

Infinite plane 



Without loss of generality, let the plane be the x-y plane. 

Then by symmetry, the E field above the plane is  

ˆEE z

while that below the plane at an equal distance is  

ˆE E z

Then by Gauss’s law, 
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Above the x-y plane 
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where  n̂ is a unit vector pointing away from the plane. 



•Two infinite parallel planes carrying equal but opposite 

uniform charge densities  



                are the E fields due to the positively and   

negatively charged plane, respectively. 
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               is a unit vector pointing from the positively 

charged plane to the negatively charged one. 

where  ̂n

Therefore, E fields in region I and III vanish, while 

E field in region II 

They have equal magnitudes but opposite directions.  



Electrostatics 

Electric Potential 



The curl of E 

 Consider a point charge q at the origin. 
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Curl E is given by 
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(For the origin, consider the line integral of a circle 

with radius r and q at the center. The line integral is 

obviously zero, and so is Curl E) 

E l e c t r o s t a t i c   f i e l d s   a r e   

C u r l – f r e e! 



E field is conservative in electrostatics 

For an arbitrary closed loop C enclosing an area S 

and not passing through the origin, from Stokes’ 

theorem: 

By the principle of superposition, for arbitrary charge 

distribution 
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This is equivalent to saying that the line integral from 

a point a to another point b is path independent. 
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Choose a reference point O and evaluate 
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O
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Since the integral is path independent, it is a function 

of r only. We can then define the electric potential by 
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Electric Potential 

 



Physical meaning: 
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It is the work done by the external force in bringing 

one unit of charge from the reference point to r. 
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The potential difference between two points a and b is  

       
                    

                   

V V d d

d d

d

      

    

  

 

 



b a

O O

b a

O O

b

a

b a E l E l

E l E l

E l



•Unit: 

The unit of electric potential is  

Force
Length

Coulomb
 = Nm/C = J/C = Volt 

When b  a, we have 

V d   E l

Hence, 

V E



 

What is the electric potential of a point charge 

q located at the origin, taking infinity as the 

reference point? 

Example: 



Answer:  
 

Since the line integral of the E field is path 

independent, choose a radial path from infinity to the 

point r, which is at a distance r from the charge, 
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 Equipotential 

A surface over which the potential is constant. 

In the above example, the equipotential surfaces are 

surfaces with the same r, i.e., concentric spherical 

surfaces. 

r 1 

equipotential 

surfaces 

V1 

V2 

r 2 O 

r1 

reference point 

at infinity 

q 



Choice of reference point 

In general, for a point charge at r’, the potential at 

r is given by 
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In principle, the reference point can be chosen 

arbitrarily. Different choices of O yield V which 

differ only by a constant. The potential itself 

carries no real physical significance. Only 

potential difference matters. 



However, notice that if the charge distribution extends 

to infinity, the choice of infinity as the reference point 

is not practical, as then the potential at any finite point 

will be infinite. Some other reference points should be 

chosen instead  

Example:  

 

What is the electric potential of an infinite line charge 

with linear charge density   ? 



 

Use cylindrical coordinate and, without loss of generality, 

assume the line charge lies on the z axis. Since 
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Instead, take a point at a distance  0s  as the reference 

point. 



Without loss of generality, assume the surface 

charge is on the x-y plane. Since 

Example:  
 

What is the electric potential of an infinite surface 

charge with surface charge density   ? 
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if we had taken infinity as the reference point, for a 

point r at a distance d above the x-y plane, 
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Instead, take a point at a distance  0d  as the reference 

point.  

Then 



Superposition Principle and General 

Localized Charge Distributions 

Since 
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and for a localized continuous charge distribution 
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In other words, V satisfies the principle of superposition. 
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Therefore, if infinity is taken as the reference point, for a 

collection of charges, 



Continuous charge distributions: 

Charges along a line with linear charge density    r
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Charges on a surface with surface charge density    r

 
 

0

1

4 S
dq da V da







    

r
r

r

Charges fill a volume with volume charge density    r

 
 

0

1

4 V
dq d V d


  




    

r
r

r



Example:  

 
Calculate the potential inside and outside a uniformly 

charged sphere with charge q and radius R, by  

 

(i) evaluating the work done in bringing one unit of 

charge of infinity to a point,  

 

(ii) integrating the contributions due to the whole 

sphere. 



Ans: (i) Recall that 
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For r > R, the field is the same as if all the charges 

were located as a point charge at the center.  

 
0

1

4

q
V r R

r
 

Therefore 

For r < R, 
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(ii)  

The    integral yields 
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(Refer to the supplementary notes for details) 
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Therefore, for observation points outside the sphere, 
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For observation points inside the sphere 

  2 2

0
0

2

0
0

3 2 2

0

3 2

3

0

2

2

0

2 2

2

1
        

1
        

3 2

1
        

2 3

        3
8

r R

r

r R

r

V r dr r dr
r r

r dr r dr
r

r R r

r

R r

R R

q r

R R



















 
        

 
     

 

 
  

 

 
  

 

 
  

 

 

 

r



Poisson’s and Laplace’s Equation 

 
Since 

We have 

  2V V     E

V E



In particular, in a charge-free region,          ,  0 

and we have 
2 0V 

which is called the Laplace’s equation. 

From Gauss’s law, 

2

0

V



  

This is the Poisson’s equation. 



Electrostatics 

 Boundary Conditions 



Boundary Condition Across Surface  

Consider a surface with surface charge density    .  

Let the E field below and above the surface be  

belowE aboveE and  

may in general vary from point to point on the surface, 

and so does the E field.  

, respectively. The surface density 

aboveE

         

 

 

 

 

  

 

 

 

 

 

  
belowE





Boundary Condition Across Surface  

Perpendicular component of E field . 

Consider a “pillbox” Gaussian surface with top and 

bottom surface area A and height  

The area A is assumed to be very small so that the 

field on the top and bottom surface of the pillbox is 

approximately constant, and so is the surface charge 

density of the plane enclosed. 
n̂


 A 

 



Boundary Condition Across Surface  

 

 

above below

0

above below

0

ˆ ˆ

ˆ

A
A A









    

  

E n E n

E E n

0 

The flux through the lateral surfaces can be neglected 

when we take          .  

n̂where      is a unit vector perpendicular to the plane and 

pointing from “below” to “above”  

Therefore, from Gauss’s law, we have 



Boundary Condition Across Surface  

Parallel component of E field . 

The long sides of the rectangle are along the direction of 

a unit vector     , which lies on the surface.  ˆ p 

Consider a thin rectangular loop with length l and width 
with one side above and the other below the surface. 



p̂

l 





Boundary Condition Across Surface  

 above below

above below

ˆ ˆ 0

ˆ ˆ

l l    

  

E p E p

E p E p

0 

Consider the line integral of the E field along the 

rectangular loop. If we take           such that the 

contributions of the two short sides can be neglected. 

The above equation holds because the field is curl-free.  

Assume that l is very small such that the E field along 

the long sides is approximately constant, we have 



Boundary Condition Across Surface  

// //

above belowE E



p̂

l 

Since this is true for any  p̂ on the surface, we have 



aboveE

belowE



In conclusion, we have  

Boundary Condition Across Surface  

above below
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ˆ
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
 E E n

E Field Across a Surface 



Potential Across a Surface  

   V V d   
b

a
b a E l

above belowV V

V E

 above below

0

ˆV V



    n

Since 

and the E field is finite everywhere, therefore the 

potential is continuous across the surface, i.e., 

However, because 

we have 

 above below

0

ˆ



  E E n



Potential Across a Surface  

above below

0

V V

n n





 
  

 

V

n




ˆV nDenote the normal derivative of V,  , by  ,  

we have 



Electrostatics 

Work and Energy 



To move a charge Q from a to b: 

Electric force = QE 

External force applied = -QE 

   W Q d Q V V      
b

a
E l b a

   
W

V V
Q

  b a

Work done  

The potential difference between a and b is 

the work done to move one unit of charge 

from a to b. 



In particular, if a is the reference point, 

     
W

V V V
Q

  b O b

The potential of point b is the work done to move 

one unit of charge from the reference point to b. 

 

If   O              ,potential is the work it takes to create 

the system (potential energy) per unit charge  



1 2, , , nq q q

1 2, , , nr r r

Suppose we have a number of discrete 

point charges   located at  

, respectively. 

q1 

q2 

q3 

q4 

q5 

qn 

O 

Q7 

q6 

q8 
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r2 

r3 
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rn 
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q q
q
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 
  
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1q  1r1.Move   from   to  , no work done required. 

12 2 1 r rrwhere  

13 3 1 r rr
23 3 2 r rrwhere  ,  

2q 2r from   to  , work done =  2.Move  

3q
3r from   to  , work done =  3.Move  

Consider the energy required to create this system 



iq  irIn general, in moving  from   to  , work done  
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Therefore, total work done in creating the system 
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Notice that we don’t take into account the energy 

required to create the point charges. We assume that 

they are given to us ready-made. 

Notice that  
ij jir r                             , therefore we can “double count” 

the terms and then divide the work done by 2: 

1 10

1

8

n n
i j

i j ij
j i

q q
W
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

  r



For continuous charge distribution, discretize the 

distribution, consider them as a set of discrete point 

charges and use the above equation, we have 

1

2
W Vd  

One can rewrite the above expression as 

 
1 1 10

1 1 1

2 4 2

n n n
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q
W q qV
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Note: 

However, as we further discretize the volume element, 

the ignored energy will be taken into account.  

Therefore we obtain the “real” total energy in the 

expression. 

During the discretization, we also ignore the work done 

to create each small volume element, and only consider 

the interaction between different volume elements.  

. 



1

2
W Vd  

Note: 

                                                                      in charge-

free regions and does not contribute to the integral. 

In particular, we can take   as the whole space.  

The volume of integral                                                is arbitrary as long as it 

includes all the charges. Because   0 

. 



From Gauss’s law 

0  E

Therefore, 

 0
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2
W Vd   E



Recall that 

   

  2            

V V V

V E

    
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E E E

E

We have 

  2

0

1

2
W V E d      E



From divergence theorem 

where S is the closed surface enclosing  

 
S

V d V d   E E a



                    as the entire space, the integral vanishes  

because  

If we take   

Hence, 2

0

all space

1

2
W E d  

1
V

r 2

1
E

r
2A r and the area of the surface  .   

 

We therefore interpret  
2

0

1

2
E                                                      as the energy density of the 

 electrostatic field.  



Example: 

Calculate the energy required to create a uniformly 

charged sphere with radius R and charge q by using 

the relations (i)  
1

2
W Vd  

and (ii)  
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Ans: 

(i) Recall that 
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Therefore, 
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(ii) Recall that 
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So, 
2

2 20
in 30

0

2
4

6 0
0

2

0

2

20
out 4

0

2

2

0

2

0

2

in out

0

4
2 4

     
8

     
40

1
4

2 4

1
      

8

      
8

3

20

R

R

R

R

q
W r r dr

R

q
r dr

R

q

R

q
W r dr

r

q
dr

r

q

R

q
W W W

R

























 
  

 





 
  

 





  









For a point charge q, R  0, and  W   !!! . 
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Electrostatics 

Conductors 



Basic Properties of Conductors  

E = 0 inside a conductor  

A conductor contains an unlimited supply of completely 

free charges. If  E 0  current  No electrostatics.  

Therefore, 

I. 

E = 0 inside a conductor  For any two points a and b 

within or on the surface,  

    0V V d    
b

a
b a E l

Therefore,The whole conductor, including the 

surface, is an equipotential. 

II. 



Basic Properties of Conductors  

If the E field on the surface has non-zero tangential 

component   Current flow on the surface  No 

electrostatics. Therefore, 

E field on the surface is perpendicular to the surface  

III. 

0/

0

 



 

  

E

E 0

0   inside a conductor  

From Gauss’s law, IV. 

0           inside a conductor. Therefore, 

Any net charge resides on the surface  
V. 



Basic Properties of Conductors  

VI. 

0

ˆ



E n

The E field just outside the conductor is  

, where  


n̂

 is the surface charge density of the conductor and  

 is a unit vector normal to the surface and pointing 

 “outward” from the conductor.  



Since the E field inside a conductor = 0 and the 

parallel component of E field is continuous across 

the surface, 

therefore, the E field just outside the surface has 

perpendicular component only. 

Proof of (III):  
(E field on the surface is perpendicular to the surface ) 

 



above below

0

ˆ



 E E n

0

ˆ



E n

therefore the E field just outside the conductor is 

        

Proof of (VI) 

Since the E field inside a conductor = 0 and on the surface: 

(           inside a conductor)  0 



Potential Across the Surface  

above below
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Recall that for an arbitrary surface  ,  

we have 

For a conductor, since V is constant inside, and  

, we have 

. 

0

ˆ
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
E n



Capacitors  

Consider two conductors with charge 

+Q on one and –Q on the other.  
 

Since the potentials are constant in 

each conductor, one can define the 

potential difference between the two 

conductors. 



Capacitors  

V V d


 


    E l

2
0
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4
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d 



 
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 
E
r
r

V E Q  

and 

We have  

since 



Define the capacitance by 

Q
C

V


By definition, Q is positive, V is the potential difference 

of the positively charged conductor relative to the 

negatively charged one, and therefore is also positive.  
 

So, C is by definition positive. 

. 



The (mks) unit of capacitance is farads (F), defined 

by F = C/V 

. 

The capacitance of a single conductor is similarly 

defined, by assuming an imaginary surrounding 

spherical shell of infinite radius as the second 

conductor. 

. 

Capacitance is a pure geometrical quantity  . 



Consider two neutral conductors. One has to move an 

amount of charge Q from the negative conductor to the 

positive one.  
 

 

Energy Stored in a Capacitor 

+Q -Q 
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Q q Q
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C C
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2
21 1

2 2

Q
W CV

C
 

or 

During the process, when the charge moved is q, since C 

is independent of the q, the potential difference is V = q/C,  

and the work done in moving another dq is dW = V dq, 

therefore 

Energy Stored in a Capacitor 



(i) Find the capacitance of a parallel-plate capacitor 

consisting of two metal surfaces of area A and held 

a distance d apart.  

2

0

all space
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2
W E d  

Example: 

(ii) Find the energy stored in the capacitor by using  



Ans: 
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0 A
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d


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(i) Assuming that the plates can be considered infinite,  

    the magnitude of the E field in between the plate  

    given by 

Therefore,  

Hence, 



(ii)Since the field is constant in between the plates 
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