Electrostatics



What is the force exerted on a
test charge Q, by some source
charges q,,0,,0;,-- ?
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Principle of superposition:

+ The interaction between any two charges is completely
unaffected by the presence of others.

- In general, the force depends not only on the position
of g, but also its velocity and acceleration.

Electrostatics:

- The source charges are stationary.




Electrostatics

Coulomb’s Law



What is the force on atest charge Q
exerted by another chargy/oat rest
at a distance r ?

F =777




Experimental facts:

« The direction of the force is along the line joining the
two charges, being either repulsive or attractive.

« The charges can be divided into two separate groups,
called positive (plus) and negative (minus).

« Like charges repel each other while the forces
between unlike charges are attractive.



Experimental facts:

« The magnitude of the force is proportional to the
product of the charges (principle of superposition)
and inversely proportional to the square of distance.
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Units:

Q -
Gaussian (cgs): F SEL -V
V

SI (mks): _ 1 qQ;
472'80 Ve

We shall use Sl units.

Unit of charge: Coulomb (C)

Definition: The amount of charges flowing through a
wire in 1 second when the current is 1 Ampere (A),
which will be defined later.



Coulomb’s Law:

Permittivity of free space

g, =8.85x107"



Electric Field:
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From the principle of superposition, for a set of point
charges Q;,0,, --q,
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Continuous charge distributions:

« Charges along a line with linear charge
density A(r')

dg=Adl' > E(r)= 4; jpi(r )
0

V.Z




Continuous charge distributions:

» Charges on a surface with surface charge
density o(r')

dg=oda’ - E(r)= 1 1 L G(Z )VAda’
7i&, Ve

r
dat’



Continuous charge distributions:

* Charges fill a volume with volume charge
density o(r')

' 1 r' 2 ’
dq= pdr —>E(r)=4ﬂg _[V p/E-Z )Fdr
0

dr’



Example:

Find the electric field a distance z from
the center of a spherical surface of
radius R, which carries a uniform charge
density o f




ANS:

e(r)=—1 [ 72

_472'6'0 Ve
R’ si
_©C J‘ sin 9d6’d¢r
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Without loss of generality, let’s assume that the
observation point is on the z-axis for simplicity.

Hence ~ n
/- =722—Rr

and,
r*=R%*+7°—-2Rzcos6




From symmetry, the E-field Is along
the z direction

E_

z

, .
_ IR 5|n¢9d6’d¢l/.2
Arg,y *S Ve

- GRZJ' sin0ddd ¢
S

(z—Rcos®)

3/2

dre, (R2 +72 2Rz cosH)
g > forz>R
= 4re,z
0 forz<R

(Refer to the supplementary notes for details)




Electrostatics

Gauss’s Law



Gauss’s Law in Integral Form

 Field lines: Connect the arrows of the E field vector

* Flux of E through a surface S:
The surface integral of E over S

E

O, =| E-da g
e
g e



Gauss’s Law in Differential Form

Consider the divergence of E-field at a pointr. To
evaluate the divergence, one may consider a
close surface S enclosing a small region V
including r.

S




The divergence of E-field is given by
V-E:Iimi E-da

V—01))Js
However, from Gauss’s Law in integral form:
jE-dazh
S ‘90
Hence, v.EoLim Qe
. Vo0 )

The right hand side is just the volume charge density
by definition. Hence,

v.E=£
€o

which is the Gauss’s law in differential form.



Notice that one can also obtain the same result by
using Dirac Delta function:

From Coulomb’s Law,

e(r) =2 [ 2024
472'80 14 Ve

If we take the divergence of both sides about r (not r’),

we have ;
V-E(r)= L jp(F')V-{LJdrE&
Argy *V 2 &,

since -
V[Lj =475° (r—r') =45 (1)
rZ



Application of Gauss’s Law

Gauss’s Law (integral form) is extremely powerful in
computing the electric field when the system exhibits
some kind of symmetries, and with the suitable
choice of Gaussian surfaces:

Spherical symmetry

Cylindrical symmetry

Plane symmetry



W Spherical symmetry: Spherical Gaussian surface
concentric with the center of rotational symmetry.

® Cylindrical symmetry: Cylindrical Gaussian surface
coaxial with the axis of rotational symmetry.

m Plane symmetry: “Pillbox” Gaussian surface bisected
by the surface.



E field inside and outside a charged
solid sphere with radius R and charge

density p(r), which depends on r only.

There is spherical
symmetry in this
problem. Consider
a concentric
Gaussian surface S
with radius r.




Due to symmetry, the E field on the Gaussian surface
Is along the radial direction, i.e.,

E=Er

By Gauss’s Law, if r > R,
1

IS E . da - 8_0 SpherepdT
Ex4rr? = a9

&g
E-gf-—> 9¢




The situation is exactly the same as if the total charge,
g, were located at the center.

F R, 1
o ISE-da:g—ojvpdr

where V is the volume enclosed by S. So

E x47r° ——j 47zr'2dr

1 I 47Z'r'2dl’

Are, re

E=Er=
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The situation is exactly the same as if the charge
enclosed by S were located at the center and the
charge outside S gave zero contribution.

In particular, for uniform charge distribution,

r 3 3 3 3
Jop(f’)4ﬂr'2dr’=p4ﬂr - p 2 (Lj =q(Lj

3 3 R R
Hence

3
Eo_2 qz(rjf L ar;
Arg, r° \ R 4dre, R




E field at a distance s from aline
charge with linear charge density /4

There is cylindrical symmetry in this problem.
Consider a cylindrical Gaussian surface coaxial
with the axis of symmetry, with radius s and
length |. By symmetry,

E=E§ A

{ﬂf 'P <




Therefore, one only has to evaluate the flux through
the curved surface of the Gaussian cylinder.

E><27Zs|:/1—I
&
E_Es-—2 ¢




E field inside and outside an infinite long
cylinder with radius R carrying a charge
density p(s) which depends on s only.

There is cylindrical symmetry in this problem.
Consider a cylindrical Gaussian surface coaxial with
the axis of symmetry, with radius s and length I. By

symmetry,

— T
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Therefore, one only has to evaluate the flux through
the curved surface of the Gaussian cylinder.

If s >R,
Ex27zsl = —j 27zls’ds

R
jo p(s')2zs'ds :

27E,S

E=ES=

op




l.e., it Is the same as the case of a line charge with
linear charge density

In particular, for constant o

and

A= j 27zs’ds
R
A= Zzpjo s'ds’
= pR?
2
E-ps= PR

op




If s <R,
Ex2rzsl =— j 27zls’ds

jo ,o(s’)27zs’ds’§

27E,S

E=ES=

l.e., it is as if the charges outside the Gaussian surface
gave no contribution to the E field.



In particular, for constant O
S / /
A= 27zp_[0 s'ds

= 71pS°

and



An infinite plane carrying a uniform
surface charge density o

There is plane symmetry in this problem.

Consider a “Gaussian pillbox” extending equal
distances above and below the plane.
Let the area of the surface parallel to the plane be A.

= Infinite plane




Without loss of generality, let the plane be the x-y plane.
Then by symmetry, the E field above the plane is

E=Ez
while that below the plane at an equal distance is
E=—FEz

Then by Gauss’s law,

D = 2EA = e _ A
€0 &0

SE=-2

2 & 0 . Infinite plane




Above the x-y plane

o .
E=—12
2¢,
Below the x-y plane
o .
E=——7
2&,
Or more compactly, o
E=—01n
28,

where Nis a unit vector pointing away from the plane.

Infinite plane



*Two infinite parallel planes carrying equal but opposite
uniform charge densities O

I [I [T+

E, E, E,+
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E.and E_are the E fields due to the positively and
negatively charged plane, respectively.

They have equal magnitudes but opposite directions.

Therefore, E fields in region | and Ill vanish, while

E field in region |l o o

E=2x—A=—n
2¢&, &,

where N is a unit vector pointing from the positively
charged plane to the negatively charged one.



Electrostatics

Electric Potential



The curl of E

Consider a point charge g at the origin.

=+ dp
Argy ¥
Curl E is given by

VxE=—+ | © (sin6’E¢)—% Pyl _i%—g(r@) 6+1{3(r59)—8Er}¢
rsind| o6 oLl r|sin@ ogp or r|or 06

Here we have

g
E = , E,=E, =0
Y 7N



>0 1 OB 4 10E . _

. ¢ =0
rsiné og¢ r 06

VxE=

(For the origin, consider the line integral of a circle
with radius r and g at the center. The line integral is
obviously zero, and so is Curl E)

Electrostatic fields are
Curl—=freel



E fileld I1s conservative in electrostatics

For an arbitrary closed loop C enclosing an area S
and not passing through the origin, from Stokes’

theorem:
¢ E-dl=[ (VxE)-da=0

By the principle of superposition, for arbitrary charge

distribution
¢ E-dl=0




This Is equivalent to saying that the line integral from
a point a to another point b is path independent.

Proof:

For two arbitrary paths C, and C, joining aandb

<J'>E-d|= E-di—[ E-dl=0
C, C,

| E-dl=| E-dl
C, C,




Electric Potential

Choose areference point O and evaluate
r
|_E-dl
O

Since the integral is path independent, it is a function
of r only. We can then define the electric potential by

V(r)=—[ E-dl




Physical meaning:

V(r)=-[ E-d :L;(%j-dl

It iIs the work done by the external force in bringing
one unit of charge from the reference point tor.

. O
g

ol



The potential difference between two points aand b is

V(b)—V(a)=(—j§E-dl)—(—j§E-dl)
=—(j§E-d|—j§E-d|)

:—jabE-dI



When b = a, we have
AV =—-E.-dI

Hence,

E=-VV

‘Unit:
The unit of electric potential is

Force
Coulomb

xLength = Nm/C = J/C = \olt



Example:

What is the electric potential of a point charge
g located at the origin, taking infinity as the
reference point?



Answer:

Since the line integral of the E field is path

Independent, choose a radial path from infinity to the

point r, which is at a distance r from the charge,
V(r)=—[ E-dl

X

=—[" 1 D b.dr (=) N .
r Azs, ¥ reference point
at infinity oo

_I - qz dr

r Are, ¥

g [ 1] / r
Bl Are, [_Fl

1 q o4




® Equipotential

A surface over which the potential is constant.
In the above example, the equipotential surfaces are
surfaces with the same r, i.e., concentric spherical

x

surfaces. \

reference point

_ _ at infinity oo
equipotential

surfaces




®Choice of reference point

In general, for a point charge at r’, the potential at
ris given by

1 g _ 14
Arey [r—1'|  Ame, v

v (r)

In principle, the reference point can be chosen
arbitrarily. Different choices of O yield V which
differ only by a constant. The potential itself
carries no real physical significance. Only
potential difference matters.



However, notice that if the charge distribution extends
to infinity, the choice of infinity as the reference point

IS not practical, as then the potential at any finite point
will be infinite. Some other reference points should be

chosen instead

Example:

What is the electric potential of an infinite line charge
with linear charge density 4 ?



Answer:

Use cylindrical coordinate and, without loss of generality,
assume the line charge lies on the z axis. Since

A4

E= S

271,45

If we had taken infinity as the reference point,
V(r)=—[ =2—8-ds'(<$)

!/
27E,S

o ] ,
} L 27g,S’ s

A [Ins']’

S
27e,

=00



Instead, take a point at a distance S, as the reference
point.

Then s A ,
V(r):jS Pres ds

A 5

— I 7 1°0

2ﬂgo[ns]s
A S

= In =2
2rg, S




Example:

What is the electric potential of an infinite surface
charge with surface charge density 0 ?

Answer:

Without loss of generality, assume the surface
charge is on the x-y plane. Since

E-_2 A
28,



If we had taken infinity as the reference point, for a
point r at a distance d above the x-y plane,



Instead, take a point at a distance d, as the reference
point.
4 2¢&,

- 250

—(d,~d)

250



Superposition Principle and General
Localized Charge Distributions

Since

V(r)==[ (E,+E,+)-d
:—ﬁEfm—EEfm—m
=V, (r)+V,(r)+--



In other words, V satisfies the principle of superposition.

Therefore, if infinity is taken as the reference point, for a
collection of charges
Z :

472-(90 |_1

and for a localized continuous charge distribution

1 1
V = d
(r) Arre, IV |




Continuous charge distributions:

BmCharges along a line with linear charge density A(r’)

dg = Adl’ >V (r) = 4; jpﬂ“f: Jar
0

BCharges on a surface with surface charge density o (r')

dg=ocda’ >V (r)= 4; fs G/(/r )da'
0

BCharges fill a volume with volume charge density o(r')

4 1 r’ /
dg=pdz’ >V (r)= . jv 'O/(/ )dr
0



Example:

Calculate the potential inside and outside a uniformly
charged sphere with charge g and radius R, by

(1) evaluating the work done in bringing one unit of
charge of infinity to a point,

(1) integrating the contributions due to the whole
sphere.



Ans: (1) Recall that




Forr >R, the field is the same as if all the charges
were located as a point charge at the center.

Therefore 1 q
V(r > R): hl
Argy T
Forr <R, . .
R q r qr
V R)=— —dr— -
(r<R) L Are, 1 ' jR 4re, R® '

2
S + d 1- r_z
Arg,R 8mgyR R

__ 9 [T
87e,R R?




(ii) V(r)=4; J, Zd r

r

FK=r—r

 =Jr2+r2—2rr'cos@

V(r)=-~ 1 "2 sin odr'd od ¢
4rgy 27 r? + 1'% —2rr' cos @

-_P [ d¢_f r'*dr’ Sin g do
Are, 90 0 \/r +1'2-2rr'cosé
J' r'*dr’ Sin g do

" 2, Jo 0 \/r +1'2-2rr'cos @

The @ integral yields

forr>r’
do =+

F sind

0 2 12 '
«/r +r'“—2rr'cosé forr'>r

=N ﬂll\;

(Refer to the supplementary notes for details)



Therefore, for observation points outside the sphere,

2

V( I r'“dr'x=
2&,°0 r

_p R3 1 47R° 1
O X X
gor 3 gor 3 4r
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For observation points inside the sphere
_ P T2 g 2 R 12 ,! 2
V(r)_z—go[jor dr ><F+_[r r'“dr x—,}

:
=21 g | r’dr’}

1 3 2 2
plir +R —r
& |Tr 3 2

_pR(1
2¢, \R 3R

I
87e,R R?




Poisson’s and Laplace’s Equation

Since

E=-VV

We have

V-.E=V:(-VV)=-V¥V



From Gauss’s law,

VAV
&0

This is the Poisson’s equation.

In particular, in a charge-free region, =0,

and we have

VA =0

which is called the Laplace’s equation.




Electrostatics

Boundary Conditions



Boundary Condition Across Surface

Consider a surface with surface charge density o.

Let the E field below and above the surface be
E....and E, ., respectively. The surface density

may in general vary from point to point on the surface,
and so does the E field.

above

O

g e



Boundary Condition Across Surface

- Perpendicular component of E field

Consider a “pillbox” Gaussian surface with top and
bottom surface area A and height 6

The area A is assumed to be very small so that the
fleld on the top and bottom surface of the pillbox Is
approximately constant, and so is the surface charge
density of the plane enclosed.




Boundary Condition Across Surface

The flux through the lateral surfaces can be neglected

when we take § - 0.
Therefore, from Gauss’s law, we have

AN+ E

E )= 24

above below A(_n

&0

(Eabove _ Ebelow ) ‘N = Z
20

where nNis a unit vector perpendicular to the plane and
pointing from “below” to “above”



Boundary Condition Across Surface

- Parallel component of E field

Consider a thin rectangular loop with length | and width o
with one side above and the other below the surface.

The long sides of the rectangle are along the direction of
a unit vector p , which lies on the surface.




Boundary Condition Across Surface

Consider the line integral of the E field along the
rectangular loop. If we take 6 -0 such that the
contributions of the two short sides can be neglected.

Assume that | is very small such that the E field along
the long sides is approximately constant, we have

Y

above Ip_I_EbeIow°|( p):O

Eabove ) p = Ebelow Iﬁ
The above equation holds because the field is curl-free.



Boundary Condition Across Surface

Since this is true for any p on the surface, we have




Boundary Condition Across Surface

E Field Across a Surface

In conclusion, we have

Q

E —E = —nN

above below




Potential Across a Surface

Since

V(b)-V (a)=—[ E-d

and the E field is finite everywhere, therefore the
potential is continuous across the surface, i.e.,

Vabove — Vbelow
However, because c vV
we have VV. —-VV A=_2
( above below ) = -
0

(Eabove _ Ebelow ) ‘N= E
€0



Potential Across a Surface

Denote the of V, VV ‘A, byz—\; ,

we have

oV

above

oV

below

on on &,




Electrostatics

Work and Energy



To move a charge Q from ato b:

Electric force = QE

External force applied =-QE
Work done yy — —Qj:E-dI =Q[V (b)-V(a)]

~V(b)-V(a)=—

(b)-V(2)=73
The potential difference between aand b is
the work done to move one unit of charge
from ato Db.



In particular, if a is the reference point,

V(b)—V(O):V(b):Vav

The potential of point b is the work done to move
one unit of charge from the reference point to b.

If O=w ,potential is the work it takes to create
the system (potential energy) per unit charge




Suppose we have a number of discrete
point charges ¢,,0,,---,d, located at

r,r respectively.

21.1n1




Consider the energy required to create this system

1.Move q, from oo to I}, no work done required.

2.Move Q, from oo to I,, work done =

1 q
X
d, iz, where

3.Move G; from oo to I, work done =

1 0, d,
X +
0; 47z, ( ,. //23) where 7;

V="

—r

1

r11ré3_r

-,



In general, in moving g,fromoo to I, work done

i1
W —q x L (q1+q2 s qu]:qix 1 §a

e\ Vv ¥y Vi dre, 3V

Ji

, wheres; =r,—r,

Therefore, total work done in creating the system

i—1 n i-1

n n 1 . 1 1oF
W= W = gx——3 == S5
i=1 i=1

dre, TV Ane TE




Notice that I, =TI, therefore we can “double count”
the terms and then divide the work done by 2:

quqj

87Z-(90 |_1 J_l r

1]
j;tl

Notice that we don’t take into account the energy
required to create the point charges. We assume that
they are given to us ready-made.



One can rewrite the above expression as

n n n

1 1 1
W=32ad =g av

j;tl

For continuous charge distribution, discretize the
distribution, consider them as a set of discrete point
charges and use the above equation, we have

W :%Lder




Note:

- During the discretization, we also ignore the work done
to create each small volume element, and only consider
the interaction between different volume elements.

However, as we further discretize the volume element,
the ignored energy will be taken into account.

Therefore we obtain the “real” total energy in the
expression.



Note:

. The volume of integral )/ is arbitrary as long as it
includes all the charges. Because p=0 in charge-
free regions and does not contribute to the integral.
In particular, we can take } as the whole space.

W =%Lder



From Gauss’s law

p=&V-E

Therefore,

W :%EOL(V-E)Vdr



Recall that
V-(VE)=V(V-E)+E-VV
:V(V-E)—E2
We have

W =%50L[v.(VE)+ E? |d7



From divergence theorem

| V-(VE)dz=¢ VE-da

where S Is the closed surface enclosing »



If we take ) as the entire space, the integral vanishes

because
1 1
V ~— —> E ~
I I
and the area of the surface 2 ocr?
1 )
Hence w=te [ et
all space

. 1 |
We therefore interpret —&,E” as the energy density of the
electrostatic field.



Example:

Calculate the energy required to create a uniformly
charged sphere with radius R and charge q by using

the relations (i)

1
W :EijVdT
and (ii) .
W:ESO J‘ Esz

all space



ANSs:

(1) Recall that
- V(r>R)=

5 V(r<R)=

9

Are,r

9

8¢, R

|

2

I
TR

J



Therefore,

1 q re
W == 3—— |d
ZIVPSHEOR( sz ‘

3
£ 3 x 4ZR° F:_Z IOR r? ><47rr2dr}

T 1675,R| 3
B 3 5
__ P9 35 47R”~ 4z R
167ze,R | 3 R®> 5
3
__ 9 . 4R [B_ﬂ
167z¢,R 3 )
2
_ 9 ><12
167ze,R 5

2

__ 39
207e,R




w=21g | Ede

all space

(11) Recall that

’ 1 qr,
E(r<R):4m9 I:{:,)r
0

1 q.
E(r>R):4ﬂg r2r
0



1

_ 4 2
So W—Zgo I E<dr
) ~ o q 2 all space
\VAVE — | r*4xzr2dr
2 70  4Are, R
2
—_4d 6_"Rr“dr
8rze,R” 70
q2
"~ 407z£,R
2
w, . =20 (7| Y L axrzar
2 YR\ 4Arzg, r
2
__d j izdr
e, R Y
qz
e, R
2
W =W, +W,, =9
207e R

* For a point charge q, R 220, and W =0 111



Electrostatics

Conductors



Basic Properties of Conductors

I. A conductor contains an unlimited supply of completely
free charges. If E«0 = current = No electrostatics.

Therefore, E = 0 inside a conductor

Il. E =0inside a conductor = For any two points a and b
within or on the surface,

V(b)-V(a)=-| E-dl=0

Therefore,The whole conductor, including the
surface, Is an equipotential.




Basic Properties of Conductors

V.

If the E field on the surface has non-zero tangential
component -2 Current flow on the surface = No
electrostatics. Therefore,

E field on the surface is perpendicular to the surface

From Gauss’s law,
V-E=plg,

E=0=p=0
p=0

o =0 inside a conductor. Therefore,
Any net charge resides on the surface




Basic Properties of Conductors

V1. The E field just outside the conductor is

G/\
E=—n

£, . where

o Is the surface charge density of the conductor and
N is a unit vector normal to the surface and pointing

“outward” from the conductor.



Proof of (ll):

(E field on the surface is perpendicular to the surface)

Since the E field inside a conductor = 0 and the
parallel component of E field is continuous across
the surface,

therefore, the E field just outside the surface has
perpendicular component only.




Proof of (VI)

(0o =0 inside a conductor)

Since the E field inside a conductor = 0 and on the surface:

E E. =25

above  —below
&g

therefore the E field just outside the conductor is

G/\
E=—n
&g



Potential Across the Surface

Recall that for an arbitrary surface

we have PY,

above

oV

pelow O

on on &,

- For a conductor, since V is constant inside, and

O .
E=g—n,we have oV o
A _

on &,




Capacitors

Consider two conductors with charge
+Q on one and —Q on the other.

Since the potentials are constant In
each conductor, one can define the
potential difference between the two
conductors.



Capacitors

since

V.-V =—[ E-d

and 1 A
E = j 7~ dr
472'80 Vak

We have VoeEoxpacQ




Define the capacitance by

- By definition, Q is positive, V is the potential difference
of the positively charged conductor relative to the
negatively charged one, and therefore is also positive.

So, Cis by definition positive.



- The capacitance of a single conductor is similarly
defined, by assuming an imaginary surrounding
spherical shell of infinite radius as the second
conductor.

*Capacitance is a pure geometrical quantity

*The (mks) unit of capacitance is farads (F), defined
by F=C/V



Energy Stored in a Capacitor

Consider two neutral conductors. One has to move an
amount of charge Q from the negative conductor to the

positive one.
|Q—’+Q|



Energy Stored in a Capacitor

During the process, when the charge moved is g, since C
IS iIndependent of the g, the potential difference is V = q/C,

and the work done in moving another dq is dW =V dq,
therefore

Q q 1Q°
W=[ 2Ldg==_
Ioc: 1757
or
2
w=18 _lcye
2C 2




Example:

(1) Find the capacitance of a parallel-plate capacitor
consisting of two metal surfaces of area A and held
a distance d apart.

(i) Find the energy stored in the capacitor by using

W =%50 j Edr

all space



ANS:

(1) Assuming that the plates can be considered infinite,
the magnitude of the E field in between the plate
given by

_9
€0
Therefore, ’ ]
V=Ed=2"-Q—
&, EA
Hence,
A
d




ANS:

(i)Since the field is constant in between the plates

2
W="LEAd =‘920(;’j Ad =%gd—A( A)
0 0

19
2 C



