
VECTOR CALCULUS
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Differentiation of vectors

Consider a vector a(u) that is a function of a scalar

variable u.

The derivative of a(u) with respect to u is defined as

da
du

=
lim

∆u → 0
a(u + ∆u)− a(u)

∆u
. (1)

Note that da
du is also a vector, which is not, in

general, parallel to a(u).
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Example

The position vector of a particle at time t in

Cartesian coordinates is given by

r(t) = 2t2i + (3t− 2)j + (3t2 − 1)k. Find the speed

of the particle at t = 1, and the component of its

acceleration in the direction s = i + 2j + k.

Answer

The velocity and acceleration of the particle are

given by

v(t) =
dr
dt

= 4ti + 3j + 6tk

a(t) =
dv
dt

= 4i + 6k

The speed of the particle at t = 1 is

|v(1)| =
√

42 + 32 + 62 =
√

61

The acceleration of the particle is constant

(independent of t), and its component in the

direction s is

a · ŝ =
(4i + 6k) · (i + 2j + k)√

12 + 22 + 12
=

5
√

6
3
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Example

The position vector of a particle in plane polar

coordinates is r(t) = ρ(t)êρ. Find expressions for

the velocity and acceleration of the particle in these

coordinates.

Answer

The velocity is given by

v(t) = ṙ(t) = ρ̇êρ + ρ ˙̂eρ = ρ̇êρ + ρφ̇êφ

since

dêρ

dt
= − sin φ

dφ

dt
i + cos φ

dφ

dt
j = φ̇êφ
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The acceleration is given by

a(t) =
d

dt
(ρ̇êρ + ρφ̇êφ)

= ρ̈êρ + ρ̇ ˙̂eρ + ρφ̇ ˙̂eφ + ρφ̈êφ + ρ̇φ̇êφ

= ρ̈êρ + ρ̇(φ̇êφ) + ρφ̇(−φ̇êρ) + ρφ̈êφ + ρ̇φ̇êφ

= (ρ̈− ρφ̇2)êρ + (ρφ̈ + 2ρ̇φ̇)êφ

since

dêφ

dt
= − cosφ

dφ

dt
i− sin φ

dφ

dt
j = −φ̇êρ
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Differentiation of composite vector
expressions

Assuming a and b are differentiable vector functions

of a scalar u, and φ is a differentiable scalar function

of u:

d

du
(φa) = φ

da
du

+
dφ

du
a (2)

d

du
(a · b) = a · db

du
+

da
du

· b (3)

d

du
(a× b) = a× db

du
+

da
du

× b (4)

If a vector a(s) is a function of the scalar variable s,

which is itself a function of u such that s = s(u),
then we have

da(s)
du

=
ds

du

da
ds
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Integration of vectors

Example

A small particle of mass m orbits a much larger

mass M centered at the origin O. According to

Newton’s law of gravitation, the position vector r of

the small mass obeys the differential equation

m
d2r
dt2

= −GMm

r2
r̂

Show that the vector r× dr/dt is a constant of

motion.

Answer

Forming the vector product of the differential

equation with r, we obtain

r× d2r
dt2

= −GM

r2
r× r̂ = 0
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But

d

dt

(
r× dr

dt

)
= r× d2r

dt2
+

dr
dt
× dr

dt
= 0

Integrating,

r× dr
dt

= c (5)

where c is a constant vector.

In an infinitesimal time dt the change in position

vector of the small mass is dr and the element of

area swept out by the position vector of the particle

is dA = 1
2 |r× dr|. Dividing by dt, we obtain

dA

dt
=

1
2

∣∣∣∣r×
dr
dt

∣∣∣∣ =
|c|
2

Therefore, the physical interpretation of Eq. 5 is

that the position vector r of the small mass sweeps

out equal areas in equal times.
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Space curves

A curve C can be described by the vector r(u)
joining the origin O of a coordinate system to a

point on the curve.

FIG. 1: The unit tangent t̂, normal n̂ and binormal b̂ to

the space curve C at a particular point P .

As the parameter u varies, the end-point of the

vector moves along the curve. In Cartesian

coordinates,

r(u) = x(u)i + y(u)j + z(u)k

where x = x(u), y = y(u), z = xz(u) are the

parametric equations of the curve.
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A curve may be described in parametric form by the

vector r(s), where the parameter s is the arc length

along the curve measured from a fixed point. For

the curve described by r(u), consider the

infinitesimal vector displacement

dr = dxi + dyj + dzk

along the curve. The square of this distance moved

is

(ds)2 = dr · dr = (dx)2 + (dy)2 + (dz)2

so that (
ds

du

)2

=
dr
du

· dr
du

Therefore, the arc length between two points on the

curve r(u), given by u = u1 and u = u2, is

s =
∫ u2

u1

√
dr
du

· dr
du

du (6)
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If a curve C is described by r(u), then dr/ds is a

unit tangent vector to C and its denoted by t̂.

The rate at which t̂ changed with respect to s is

given by dt̂/ds, and its magnitude is defined as the

curvature κ of the curve C at a given point,

κ =
∣∣∣∣
dt̂
ds

∣∣∣∣ =
∣∣∣∣
d2r̂
ds2

∣∣∣∣ .

We can also define the quantity ρ = 1/κ, which is

called the radius of curvature. Note that dt̂/ds is

perpendicular to t̂, and its unit vector direction is

denoted by n̂ (principal normal). We therefore have

dt̂
ds

= κn̂ (7)

The unit vector b̂ = t̂× n̂, which is perpendicular

to the plane containing t̂ and n̂, is called the

binormal to C. The rate at which b̂ changes with

respect to s is given by db̂/ds. In particular,

db̂
ds

= −τ n̂. (8)
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Vector functions of several arguments

If a = a(u1, u2, . . . , un) and each of the ui is also a

function ui(v1, v2, . . . , vn) of the variables vi, then

∂a
∂vi

=
∂a
∂u1

∂u1

∂vi
+

∂a
∂u2

∂u2

∂vi
+ · · ·+ ∂a

∂un

∂un

∂vi

=
n∑

j=1

∂a
∂uj

∂uj

∂vi
(9)

A special case of this rule arises when a is an

explicit function of some variable v, as well as of

scalars u1, u2, . . . , un that are themselves functions

of v. Then we have

da
dv

=
∂a
∂v

+
n∑

j=1

∂a
∂uj

∂uj

∂v
(10)
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Surfaces

A surface S can be described by the vector r(u, v)
joining the origin O of a coordinate system to a

point on the curve.

FIG. 2: The tangent plane T to a surface S at a

particular point P ; u = c1 and v = c2 are the coordinate

curves.

As the parameters u and v vary, the end-point of

the vector moves over the surface.
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In Cartesian coordinates, the surface is given by

r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k

If the surface is smooth, then at any point P on S

the vectors ∂r/∂u and ∂r/∂v are linearly

independent, and define the tangent plane T at the

point P . A vector normal to the surface at P is

given by

n =
∂r
∂u

× ∂r
∂v

In the neighbourhood of P , an infinitesimal vector

displacement dr is written as

dr =
∂r
∂u

du +
∂r
∂v

dv
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If we consider an infinitesimal parallelogram near P ,

whose sides are the coordinate curves, then the

element of area at P is

dS =
∣∣∣∣
∂r
∂u

du× ∂r
∂v

dv

∣∣∣∣ =
∣∣∣∣
∂r
∂u

× ∂r
∂v

∣∣∣∣ du dv

Therefore, total area of surface is

A =
∫ ∫

R

∣∣∣∣
∂r
∂u

× ∂r
∂v

∣∣∣∣ du dv

where R is the region in the uv-plane corresponding

to the range of parameter values that define the

surface.
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Example

Find the element of area on the surface of a sphere

of radius a, and hence calculate its total surface

area.

Answer

We can represent a point r on the surface of the

sphere in terms of the two parameters θ and φ:

r(θ, φ) = a sin θ cos φi + a sin θ sin φj + a cos θk

where θ and φ are the polar and azimuthal angles

respectively. At any point P , vectors tangent to the

coordinate curves θ = constant and φ = constant
are

∂r
∂θ

= a cos θ cos φi + a cos θ sin φj− a sin θk

∂r
∂φ

= −a sin θ sin φi + a sin θ cos φj
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A normal n to the surface at this point is then given

by

n =
∂r
∂θ

× ∂r
∂φ

=

∣∣∣∣∣∣∣∣

i j k

a cos θ cosφ a cos θ sinφ −a sin θ

−a sin θ sin φ a sin θ cosφ 0

∣∣∣∣∣∣∣∣
= a2 sin θ(sin θ cosφi + sin θ sin φj + cos θk)

which has a magnitude of a2 sin θ. Therefore the

element of area at P is

dS = a2 sin θdθdφ

and the total surface area of the sphere is given by

A =
∫ π

0

dθ

∫ 2π

0

dφ a2 sin θ = 4πa2
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Vector operators

∇ ≡ i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

Gradient of a scalar field:

gradφ = ∇φ ≡ i
∂φ

∂x
+ j

∂φ

∂y
+ k

∂φ

∂z
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Now,

∇φ · dr =
(
i
∂φ

∂x
+ j

∂φ

∂y
+ k

∂φ

∂z

)
· (idx + jdy + kdz)

=
∂φ

∂x
dx +

∂φ

∂y
dy +

∂φ

∂z
dz

= dφ

If r depends on some parameter u such that r(u)
defines a space curve, the total derivative of φ with

respect to u is

dφ

du
= ∇φ · dr

du

In general, the rate of change of φ with respect to

the distance s in a particular direction a is

dφ

ds
= ∇φ · â

(Directional derivative)
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The scalar differential operator â · ∇ gives the rate

of change with distance in the direction â of the

quantity (vector or scalar) on which it acts. In

Cartesian coordinates, it can be written as

â · ∇ = ax
∂

∂x
+ ay

∂

∂y
+ az

∂

∂z

Thus, we can write the infinitesimal change in an

electric field in moving from r to r + dr as

dE = (dr · ∇)E.

Consider a surface defined by φ(x, y, z) = c, where c

is some constant. If t̂ is a unit tangent to this

surface at some point, then dφ/ds = 0 in this

direction, and we have ∇φ · t̂ = 0.
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Example

Find expressions for the equations of the tangent

plane and line normal to the surface φ(x, y, z) = c

at the point P with coordinates (x0, y0, z0). Use the

results to find the equations of the tangent plane

and the line normal to the surface of the sphere

φ = x2 + y2 + z2 = a2 at the point (0, 0, a).

Answer

A vector normal to the surface φ(x, y, z) = c at the

point P is ∇φ, and denoted by n0. If r0 is the

position vector of the point P relative to the origin,

and r is the position vector of any point on the

tangent plane, the vector equation of the tangent

plane is

(r− r0) · n0 = 0

Similarly, the vector equation of the line is

(r− r0)× n0 = 0
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FIG. 3: The tangent plane and the normal to the surface

of the sphere φ = x2 + y2 + z2 = a2 at the point r0

with coordinates (0, 0, a).

If we now consider the surface of the sphere

φ = x2 + y2 + z2 = a2, then

∇φ = 2xi + 2yj + 2zk

= 2ak at the point (0, 0, a)
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Therefore, the equation of the tangent plane to the

sphere at this point is

(r− r0) · 2ak = 0

This gives 2a(z − a) = 0 or z = a. The equation of

the line normal to the sphere at the point (0, 0, a) is

(r− r0)× 2ak = 0

which gives 2ayi− 2axj = 0 or x = y = 0 (z-axis).
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Divergence of a vector field

The divergence of a vector field a(x, y, z) is defined

as

div a = ∇ · a =
∂ax

∂x
+

∂ay

∂y
+

∂az

∂z

Curl of a vector field

The curl of a vector field a(x, y, z) is defined as

curla = ∇× a

=
(

∂az

∂y
− ∂ay

∂z

)
i +

(
∂ax

∂z
− ∂az

∂x

)
j

+
(

∂ay

∂x
− ∂ax

∂y

)
k

=

∣∣∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

ax ay az

∣∣∣∣∣∣∣∣
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Vector operators acting on sums and
products

∇(φ + ψ) = ∇φ +∇ψ

∇ · (a + b) = ∇ · a +∇ · b
∇× (a + b) = ∇× a +∇× b

∇(φψ) = φ∇ψ + ψ∇φ

∇(a · b) = a× (∇× b) + b× (∇× a)

+(a · ∇)b + (b · ∇)a

∇ · (φa) = φ∇ · a + a · ∇φ

∇ · (a× b) = b · (∇× a)− a · (∇× b)

∇× (φa) = ∇φ× a + φ∇× a

∇× (a× b) = a(∇ · b)− b(∇ · a) + (b · ∇)a

−(a · ∇)b
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Some useful special cases

∇φ(r) =
dφ

dr
r̂

∇ · [φ(r)r] = 3φ(r) + r
dφ(r)

dr

∇2φ(r) =
d2φ(r)

dr2
+

2
r

dφ(r)
dr

∇× [φ(r)r] = 0

where r = |r|.
We also have

∇r = r̂

∇ · r = 3

∇× r = 0
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Combinations of grad, div and curl

∇×∇φ = 0

∇ · (∇× a) = 0

∇ · ∇φ = ∇2φ

∇(∇ · a) =
(

∂2ax

∂x2
+

∂2ay

∂x∂y
+

∂2az

∂x∂z

)
i

(
∂2ax

∂y∂x
+

∂2ay

∂y2
+

∂2az

∂y∂z

)
j

(
∂2ax

∂z∂x
+

∂2ay

∂z∂y
+

∂2az

∂z2

)
k

∇× (∇× a) = ∇(∇ · a)−∇2a
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Example

Show that ∇ · (∇φ×∇ψ) = 0 where φ and ψ are

scalar fields.

Answer

We have

∇ · (a× b) = b · (∇× a)− a · (∇× b).

If we let a = ∇φ and b = ∇ψ, we obtain

∇·(∇φ×∇ψ) = ∇ψ ·(∇×∇φ)−∇φ·(∇×∇ψ) = 0

since ∇×∇φ = 0 = ∇×∇ψ.
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Cylindrical polar coordinates

FIG. 4: Cylindrical polar coordinates ρ, φ, z

The position of a point P having Cartesian

coordinates x, y, z may be expressed in terms of

cylindrical polar coordinates ρ, φ, z where

x = ρ cos φ, y = ρ sin φ, z = z (11)

and ρ ≥ 0, 0 ≤ φ < 2π and −∞ < z < ∞. The

position vector of P may be written as

r = ρ cos φi + ρ sinφj + zk
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Taking partial derivatives with respect to ρ, φ, z

respectively, we obtain

eρ = ∂r
∂ρ = cos φi + sin φj

eφ = ∂r
∂φ = −ρ sin φi + ρ cos φj

ez = ∂r
∂z = k

These vectors lie in the direction of increasing ρ, φ

and z respectively, but are not all of unit length.

The unit vectors are

êρ = eρ = cos φi + sin φj

êφ = 1
ρeφ = − sin φi + cosφj

êz = ez = k
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The expression for a general infinitesimal vector

displacement dr in the position of P is given by

dr =
∂r
∂ρ

dρ +
∂r
∂φ

dφ +
∂r
∂z

dz

= dρ eρ + dφ eφ + dz ez

= dρ êρ + ρ dφ êφ + dz êz

The magnitude ds of the displacement dr is given in

cylindrical polar coordinates by

(ds)2 = dr · dr = (dρ)2 + ρ2(dφ)2 + (dz)2
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FIG. 5: The element of volume in cylindrical polar

coordinates is given by ρ dρ dφ dz.

Volume of the infinitesimal parallelepiped defined by

the vectors dρ êρ, ρ dφ êφ and dz êz is given by

dV = |dρ êρ · (ρ dφ êφ × dz êz)| = ρ dρ dφ dz

since the basis vectors are orthonormal.
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Example

Express the vector field a = yzi− yj + xz2k in

cylindrical polar coordinates, and hence calculate its

divergence. Show that the same result is obtained by

evaluating the divergence in Cartesian coordinates.

Answer

From the basis vectors of the cylindrical polar

coordinate, we obtain

i = cos φ êρ − sin φ êφ

j = sin φ êρ + cos φ êφ

k = êz

Substituting these relations and (11) into the

expression for a we find

a = zρ sinφ(cos φ êρ − sin φ êφ)

−ρ sin φ(sinφ êρ + cos φ êφ) + z2ρ cos φ êz

= (zρ sin φ cos φ− ρ sin2 φ)êρ

−(zρ sin2 φ + ρ sin φ cos φ)êφ + z2ρ cos φ êz
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Substituting into the expression for ∇ · a, we have

∇ · a = 2z sin φ− 2 sin2 φ− 2z sin φ cos φ

− cos2 φ + sin2 φ + 2zρ cosφ

= 2zρ cosφ− 1.

Calculating the divergence directly in Cartesian

coordinates, we have

∇·a =
∂ax

∂x
+

∂ay

∂y
+

∂az

∂z
= 2zx−1 = 2zρ cos φ−1
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Spherical polar coordinates

FIG. 6: Spherical polar coordinates ρ, θ, φ

The position of a point P with Cartesian

coordinates x, y and z may be expressed in terms of

spherical polar coordinates r, θ and φ, where

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ

and r ≥ 0, 0 ≤ θ ≤ π, and 0 ≤ φ < 2π. The

position vector P is

r = r sin θ cosφ i + r sin θ sin φ j + r cos θ k
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The unit basis vectors are

êr = sin θ cos φ i + sin θ sin φ j + cos θk

êθ = cos θ cosφ i + cos θ sin φ j− sin θ k

êφ = − sin φ i + cos φ j

A general infinitesimal vector displacement in

spherical polars is

dr = dr êr + r dθ êθ + r sin θ dφ êφ

The magnitude ds of the displacement dr is given by

(ds)2 = dr · dr = (dr)2 + r2(dθ)2 + r2 sin2 θ(dφ)2
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FIG. 7: The element of volume in spherical polar

coordinates is given by r2 sin θ dr dθ dφ.

The volume of the infinitesimal parallelepiped

defined by the vectors dr êr, r dθ êθ, and

r sin θ dφ êφ is given by

dV = |dr êr·(r dθ êθ×r sin θ dφ êφ)| = r2 sin θ dr dθ dφ
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∇Φ =
∂Φ
∂r

êr +
1
r

∂Φ
∂θ

êθ +
1

r sin θ

∂Φ
∂φ

êφ

∇ · a =
1
r2

∂

∂r
(r2ar) +

1
r sin θ

∂

∂θ
(sin θ aθ)

+
1

r sin θ

∂aφ

∂φ

∇× a =
1

r2 sin θ

∣∣∣∣∣∣∣∣

êr rêθ r sin θ êφ

∂
∂r

∂
∂θ

∂
∂φ

ar raθ r sin θ aφ

∣∣∣∣∣∣∣∣

∇2Φ =
1
r2

∂

∂r

(
r2 ∂Φ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂Φ
∂θ

)

+
1

r2 sin2 θ

∂2Φ
∂φ2
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