PC2174

Tutorial 4: Integral Transforms

- 1. Find the Fourier transform of the function $f(t) = \exp(-|t|)$.
 - (a) By applying Fourier's inversion theorem prove that

$$\frac{\pi}{2}\exp(-|t|) = \int_0^\infty \frac{\cos \omega t}{1+\omega^2} d\omega.$$

- (b) By making the substitution $\omega = \tan \theta$, demonstrate the validity of Parseval's theorem for this function.
- 2. By taking the Fourier transform of the equation

$$\frac{d^2\phi}{dx^2} - K^2\phi = f(x)$$

show that its solution $\phi(x)$ can be written as

$$\phi(x) = \frac{-1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{e^{ikx} f(k)}{k^2 + K^2} dk,$$

where $\tilde{f}(k)$ is the Fourier transform of f(x).