
Series solutions of ordinary

differential equations
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Second-order linear ordinary differential
equations

Any homogeneous second-order linear ODE can be

written in the form

y′′ + p(x)y′ + q(x)y = 0, (1)

where y′ = dy/dx and p(x) and q(x) are given

functions of x. The most general solution to Eq. (1)

is

y(x) = c1y1(x) + c2y2(x), (2)

where y1(x) and y2(x) are linearly independent

solutions of Eq. (1), and c1 and c2 are constants.

Their linear independence may be verified by the

evaluation of the Wronskian

W (x) =

∣∣∣∣∣∣
y1 y2

y′1 y′2

∣∣∣∣∣∣
= y1y

′
2 − y2y

′
1. (3)

If W (x) 6= 0 in a given interval, then y1 and y2 are

linearly independent in that interval.

2



By differentiating Eq. (3) with respect to x, we

obtain

W ′ = y1y
′′
2 + y′1y

′
2 − y2y

′′
1 − y′2y

′
1 = y1y

′′
2 − y′′1 y2.

Since both y1 and y2 satisfy Eq. (1), we may

substitute for y′′1 and y′′2 , which yields

W ′ = −y1(py′2 + qy2) + (py′1 + qy1)y2

= −p(y1y
′
2 − y′1y2) = −pW.

Integrating, we find

W (x) = C exp
{
−

∫ x

p(u) du

}
, (4)

where C is a constant. If p(x) ≡ 0, we obtain W =
constant.
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Ordinary and singular points of an ODE

Consider the second-order linear homogeneous ODE

y′′ + p(z)y′ + q(z) = 0, (5)

where the functions are complex functions of a

complex variable z. If at some point z = z0 the

functions p(z) and q(z) are finite, and can be

expressed as complex power series

p(z) =
∞∑

n=0

pn(z − z0)n, q(z) =
∞∑

n=0

qn(z − z0)n,

then p(z) and q(z) are said to be analytic at z = z0,

and this point is called an ordinary point of the

ODE. If, however, p(z) or q(z), or both, diverge at

z = z0, then it is called a singular point of the ODE.
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Even if an ODE is singular at a given point z = z0,

it may still possess a non-singular (finite) solution at

that point. The necessary and sufficient condition

for such a solution to exist is that (z − z0)p(z) and

(z − z0)2q(z) are both analytic at z = z0. Singular

points that have this property are regular singular

points, whereas any singular point not satisfying

both these criteria is termed an irregular or essential

singularity.
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Example

Legendre’s equation has the form

(1− z2)y′′ − 2zy′ + l(l + 1)y = 0. (6)

where l is a constant. Show that z = 0 is an

ordinary point and z = ±1 are regular singular

points of this equation.

Answer

We first divide through by 1− z2 to put the

equation into our standard form, Eq. (5):

y′′ − 2z

1− z2
y′ +

l(l + 1)
1− z2

y = 0.

Comparing with Eq. (5), we identify

p(z) =
−2z

1− z2
=

−2z

(1 + z)(1− z)

q(z) =
l(l + 1)
1− z2

=
l(l + 1)

(1 + z)(1− z)
.
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By inspection, p(z) and q(z) are analytic at z = 0,

which is therefore an ordinary point, but both

diverge for z = ±1, which are thus singular points.

However, at z = 1, we see that both (z − 1)p(z)
and (z − 1)2q(z) are analytic, and hence z = 1 is a

regular singular point. Similarly, z = −1 is a regular

singular point.
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Example

Show that the Legendre’s equation has a regular

singularity at |z| → ∞.

Answer

Letting w = 1/z, the derivatives with respect to z

become

dy

dz
=

dy

dw

dw

dz
= − 1

z2

dy

dw
= −w2 dy

dw
,

d2y

dz2
=

dw

dz

d

dw

(
dy

dz

)

= −w2

(
−2w

dy

dw
− w2 d2y

dw2

)

= w3

(
2

dy

dw
+ w

d2y

dw2

)
.

If we substitute these derivatives into Legendre’s

equation Eq. (6) we obtain
(

1− 1
w2

)
w3

(
2

dy

dw
+ w

d2y

dw2

)

+2
1
w

w2 dy

dw
+ l(l + 1)y = 0,

8



which simplifies to give

w2(w2 − 1)
dy

dw2
+ 2w3 dy

dw
+ l(l + 1)y = 0.

Dividing through by w2(w2 − 1), and comparing

with Eq. (5), we identify

p(w) =
2w

w2 − 1
,

q(w) =
l(l + 1)

w2(w2 − 1)
.

At w = 0, p(w) is analytic but q(w) diverges, and

so the point |z| → ∞ is a singular point of

Legendre’s equation. However, since wp and w2q

are both analytic at w = 0, |z| → ∞ is a regular

singular point.
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Equation Regular Essential

singularities singularities

Legendre

(1− z2)y′′

−2zy′ + l(l + 1)y = 0 −1, 1,∞
Chebyshev

(1− z2)y′′

−zy′ + n2y = 0 −1, 1,∞
Bessel

z2y′′ + zy′

+(z2 − ν2)y = 0 0 ∞
Laguerre

zy′′ + (1− z)y′

+αy = 0 0 ∞
Simple harmonic

oscillator

y′′ + ω2y = 0 ∞
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Series solutions about an ordinary point

If z = z0 is an ordinary point of Eq. (5), then every

solution y(z) of the equation is also analytic at

z = z0. We shall take z0 as the origin. If this is not

the case, then a substitution Z = z− z0 will make it

so. Then y(z) can be written as

y(z) =
∞∑

n=0

anzn. (7)

Such a power series converges for |z| < R, where R

is the radius of convergence.

Since every solution of Eq. (5) is analytic at an

ordinary point, it is always possible to obtain two

independent solutions of the form, Eq. (7).
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The derivatives of y with respect to z are given by

y′ =
∞∑

n=0

nanzn−1 =
∞∑

n=0

(n + 1)an+1z
n, (8)

y′′ =
∞∑

n=0

n(n− 1)anzn−2

=
∞∑

n=0

(n + 2)(n + 1)an+2z
n. (9)

By substituting Eqs. (7)–(9) into the ODE, Eq. (5),

and requiring that the coefficients of each power of

z sum to zero, we obtain a recurrence relation

expressing an as a function of the previous ar

(0 ≤ r ≤ n− 1).
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Example

Find the series solutions, about z = 0, of

y′′ + y = 0.

Answer

z = is an ordinary point of the equation, and so we

may obtain two independent solutions by making

the substitution y =
∑∞

n=0 anzn. Using Eq. (7) and

(9), we find

∞∑
n=0

(n + 1)(n + 1)an+1z
n +

∞∑
n=0

anzn = 0,

which may be written as

∞∑
n=0

[(n + 1)(n + 1)an+2 + an]zn = 0.

For this equation to be satisfied, we require that the

coefficient of each power of z vanishes separately,

and so we obtain the two-term recurrence relation

an+1 = − an

(n + 2)(n + 1)
for n ≥ 0.
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Two independent solutions of the ODE may be

obtained by setting either a0 = 0 or a1 = 0. If we

first set a1 = 0 and choose a0 = 1, then we obtain

the solution

y1(z) = 1− z2

2!
+

z4

4!
− · · · =

∞∑
n=0

(−1)n

(2n)!
z2n.

However, if we set a0 = 0 and choose a1 = 1, we

obtain a second independent solution

y2(z) = z − z3

3!
+

z5

5!
− · · · =

∞∑
n=0

(−1)n

(2n + 1)!
z2n+1.

Recognizing these two series as cos z and sin z, we

can write the general solution as

y(z) = c1 cos z + c2 sin z,

where c1 and c2 are arbitrary constants.
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Example

Find the series solutions, about z = 0, of

y′′ − 2
(1− z)2

y = 0.

Answer

z = 0 is an ordinary point, and we may therefore

find two independent solutions by substituting

y =
∑∞

n=0 anzn. Using Eq. (8) and (9), and

multiplying through by (1− z)2, we find

(1− 2z + z2)
∞∑

n=0

n(n− 1)anzn−2 − 2
∞∑

n=0

anzn = 0,

which leads to

∞∑
n=0

n(n− 1)anzn−2 − 2
∞∑

n=0

n(n− 1)anzn−1

+
∞∑

n=0

n(n− 1)anzn − 2
∞∑

n=0

anzn = 0.
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In order to write all these series in terms of the

coefficients of zn, we must shift the summation

index in the first two sums to obtain

∞∑
n=0

(n + 2)(n + 1)an+2z
n − 2

∞∑
n=0

(n + 1)nan+1z
n

+
∞∑

n=0

(n2 − n− 2)anzn = 0,

which can be written as

∞∑
n=0

(n+1)[(n+2)an+2−2nan+1+(n−2)an]zn = 0.

By demanding that the coefficients of each power of

z vanish separately, we obtain the recurrence relation

(n + 2)an+2 − 2nan+1 + (n− 2)an = 0 for n ≥ 0,

which determines an for n ≥ 2 in terms of a0 and

a1.
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One solution has an = a0 for all n, in which case

(choosing a0 = 1), we find

y1(z) = 1 + z + z2 + z3 + · · · = 1
1− z

.

The other solution to the recurrence relation is

a1 = −2a0, a2 = a0 and an = 0 for n > 2, so that

we obtain a polynomial solution to the ODE:

y2(z) = 1− 2z + z2 = (1− z)2.

The linear independence of y1 and y2 can be

checked:

W = y1y
′
2 − y′1y2

=
1

1− z
[−2(1− z)]− 1

(1− z)2
(1− z)2 = −3.

The general solution of the ODE is therefore

y(z) =
c1

1− z
+ c2(1− z)2.
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Series solutions about a regular singular
point

If z = 0 is a regular singular point of the equation

y′′ + p(z)y′ + q(z)y = 0,

then p(z) and q(z) are not analytic at z = 0. But

there exists at least one solution to the above

equation, of the form

y = zσ
∞∑

n=0

anzn, (10)

where the exponent σ may be real or complex

number, and where a0 6= 0. Such a series is called a

generalized power series or Frobenius series.
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Since z = 0 is a regular singularity of the ODE,

zp(z) and z2q(z) are analytic at z = 0, so that we

may write

zp(z) = s(z) =
∞∑

n=0

snzn

z2q(z) = t(z) =
∞∑

n=0

tnzn.

The original ODE therefore becomes

y′′ +
s(z)
z

y′ +
t(z)
z2

y = 0.

Let us substitute the Frobenius series Eq. (10) into

this equation. The derivatives of Eq. (10) with

respect to x are given by

y′ =
∞∑

n=0

(n + σ)anzn+σ−1 (11)

y′′ =
∞∑

n=0

(n + σ)(n + σ − 1)anzn+σ−2, (12)
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and we obtain

∞∑
n=0

(n + σ)(n + σ − 1)anzn+σ−2

+s(z)
∞∑

n=0

(n + σ)anzn+σ−2 + t(z)
∞∑

n=0

anzn+σ−2 = 0.

Dividing this equation through by zσ−2 we find

∞∑
n=0

[(n+σ)(n+σ−1)+s(z)(n+σ)+t(z)]anzn = 0.

(13)
Setting z = 0, all terms in the sum with n > 0
vanish, so that

[σ(σ − 1) + s(0)σ + t(0)]a0 = 0,

which, since we require a0 6= 0, yields the indicial

equation

σ(σ − 1) + s(0)σ + t(0) = 0. (14)
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This equation is a quadratic in σ and in general has

two roots. The two roots of the indicial equation σ1

and σ2 are called the indices of the regular singular

point. By substituting each of these roots into

Eq. (13) in turn, and requiring that the coefficients

of each power of z vanish separately, we obtain a

recurrence relation (for each root) expressing each

an as a function of the previous ar (0 ≤ r ≤ n− 1).
Depending on the roots of the indicial equation σ1

and σ2, there are three possible general cases.
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Distinct roots not differing by an integer

If the roots of the indicial equation σ1 and σ2 differ

by an amount that is not an integer, then the

recurrence relations corresponding to each root lead

to two linearly independent solutions of the ODE,

y1(z) = zσ1

∞∑
n=0

anzn, y2(z) = zσ2

∞∑
n=0

bnzn.

The linear independence of these two solutions

follows from the fact that y2/y1 is not a constant

since σ1 − σ2 is not an integer. Since y1 and y2 are

linearly independent we may use them to construct

the general solution y = c1y1 + c2y2.

We also note that this case includes complex

conjugate roots where σ2 = σ∗1 , since

σ1 − σ2 = σ1 − σ∗1 = 2i Im σ1 cannot be equal to a

real integer.
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Example

Find the power series solutions about z = 0 of

4zy′′ + 2y′ + y = 0.

Answer

Dividing through by 4z, we obtain

y′′ +
1
2z

y′ +
1
4z

y = 0, (15)

and on comparing with Eq. (5) we identify

p(z) = 1/(2z) and q(z) = 1/(4z). Clearly z = 0 is a

singular point of Eq. (15), but since zp(z) = 1/2
and z2q(z) = z/4 are finite there, it is a regular

singular point. We therefore substitute the

Frobenius series y = zσ
∑∞

n=0 anzn into Eq. (15).

Using Eq. (11) and (12), we obtain

∞∑
n=0

(n + σ)(n + σ − 1)anzn+σ−2

+
1
2z

∞∑
n=0

(n + σ)anzn+σ−1 +
1
4z

∞∑
n=0

anzn+σ = 0,
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which on dividing through by zσ−2 gives

∞∑
n=0

[(n + σ)(n + σ − 1) +
1
2
(n + σ) +

1
4
z]anzn = 0.

(16)
If we set z = 0 then all terms in the sum with n > 0
vanish, and we obtain the indicial equation

σ(σ − 1) +
1
2
σ = 0,

which has roots σ = 1/2 and σ = 0. Since these

roots do not differ by an integer, we expect to find

two independent solutions to Eq. (15), in the form

of Frobenius series.

Demanding that the coefficients of zn vanish

separately in Eq. (16), we obtain the recurrence

relation

(n+σ)(n+σ−1)an+
1
2
(n+σ)an+

1
4
an−1 = 0. (17)
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If we choose the larger root of the indicial equation,

σ = 1/2, this becomes

(4n2 + 2n)an + an−1 = 0 ⇒ an =
−an−1

2n(2n + 1)
.

Setting a0 = 1 we find an = (−1)n/(2n + 1)! and

so the solution to Eq. (15) is

y1(z) =
√

z
∞∑

n=0

(−1)n

(2n + 1)!
zn

=
√

z − (
√

z)3

3!
+

(
√

z)5

5!
− · · · = sin

√
z.

To obtain the second solution, we set σ = 0 in

Eq. (17), which gives

(4n2 − 2n)an + an−1 = 0 ⇒ an = − an−1

2n(2n− 1)
.

Setting a0 = 1 now gives an = (−1)n/(2n)!, and so

the second solution to Eq. (15) is

y2(z) =
∞∑

n=0

(−1)n

(2n)!
zn

= 1− (
√

z)2

2!
+

(
√

z)4

4!
− · · · = cos

√
z.
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We may check that y1(z) and y2(z) are linearly

independent by computing the Wronskian

W = y1y
′
2 − y2y

′
1

= sin
√

z

(
− 1

2
√

z
sin
√

z

)

− cos
√

z

(
1

2
√

z
cos

√
z

)

= − 1
2
√

z
(sin2√z + cos2

√
z)

= − 1
2
√

z
6= 0.

Since W 6= 0 the solutions y − 1(z) and y2(z) are

linearly independent. Hence the general solution to

Eq. (15) is given by

y(z) = c1 sin
√

z + c2 cos
√

z.
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Repeated root of the indicial equation

If the indicial equation has a repeated root, so that

σ1 = σ2 = σ, then only one solution in the form of

a Frobenius series Eq. (10) may be found

y1(z) = zσ
∞∑

n=0

anzn.
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Distinct roots differing by an integer

If the roots of the indicial equation differ by an

integer, then the recurrence relation corresponding

to the larger of the two roots leads to a solution of

the ODE. For complex roots, the ‘larger’ root is

taken to be the one with the larger real part.
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Example

Find the power series solutions about z = 0 of

z(z − 1)y′′ + 3zy′ + y = 0. (18)

Answer

Dividing through by z(z − 1), we put

y′′ +
3

(z − 1)
y′ +

1
z(z − 1)

y = 0, (19)

and on comparing with Eq. (5), we identify

p(z) = 3/(z − 1) and q(z) = 1/[z(z − 1)]. We see

that z = 0 is a singular point of Eq. (19), but since

zp(z) = 3z/(z − 1) and z2q(z) = z/(z − 1) are

finite there, it is a regular singular point. We

substitute y = zσ
∑∞

n=0 anzn into Eq. (19), and

using Eq. (11) and (12), we obtain
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∞∑
n=0

(n + σ)(n + σ − 1)anzn+σ−2

+
3

z − 1

∞∑
n=0

(n + σ)anzn+σ−1

+
1

z(z − 1)

∞∑
n=0

anzn+σ = 0,

which on dividing through by zσ−2 gives

∞∑
n=0

[
(n + σ)(n + σ − 1) +

3z

z − 1
(n + σ)

+
z

z − 1

]
anzn = 0.

Multiplying through by z − 1, we obtain

∞∑
n=0

[(z−1)(n+σ)(n+σ−1)+3z(n+σ)+z]anzn = 0.

(20)

30



If we set z = 0, then all terms in the sum with

n > 0 vanish, and we obtain the indicial eqaution

σ(σ − 1) = 0,

which has the roots σ = 1 and σ = 0.

Since the roots differ by an integer, it may not be

possible to find two linearly independent solutions of

Eq. (19) in the form of Frobenius series. We are

guaranteed to find one such solution corresponding

to the larger root, σ = 1.

Demanding that the coefficients of zn vanish

separately in Eq. (20), we obtain the recurrence

relation

(n− 1 + σ)(n− 2 + σ)an−1 − (n + σ)(n + σ − 1)an

+3(n− 1 + σ)an−1 + an−1 = 0,

which may be simplified to give

(n + σ − 1)an = (n + σ)an−1. (21)
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Substituting σ = 1 into this expression, we obtain

an =
(

n + 1
n

)
an−1,

and setting a0 = 1 we find an = n + 1, so one

solution to Eq. (19) is

y1(z) = z
∞∑

n=0

(n + 1)zn = z(1 + 2z + 3z2 + · · ·)

=
z

(1− z)2
. (22)

If we attempt to find a second solution

(corresponding to the smaller root of the indicial

equation) by setting σ = 0 in Eq. (21), we find

an =
(

n

n− 1

)
an−1,

but we require a0 6= 0, so a1 is formally infinite and

the method fails.
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Obtaining a second solution

The Wronskian method

If y1 and y2 are linearly independent solutions of the

standard equation

y′′ + p(z)y′ + q(z)y = 0,

then the Wronskian of these two solutions is given

by W (x) = y1y
′
2 − y2y

′
1. Dividing the Wronskian by

y2
1 we obtain

W

y2
1

=
y′2
y1
− y′1

y2
1

y2

=
y′2
y1

+
[

d

dz

(
1
y1

)]
y2 =

d

dz

(
y2

y1

)
,

which integrates to give

y2(x) = y1(x)
∫ x W (u)

y2
1(u)

du.

33



Using the alternative expression for W (z) given in

Eq. (4) with C = 1, we find

y2(z) = y1(z)
∫ z 1

y2
1(u)

exp
{
−

∫ u

p(v) dv

}
du.

(23)
Hence, given y1, we can calculate y2.
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Example

Find a second solution to Eq. (19) using the

Wronskian method.

Answer

For the ODE Eq. (19) we have p(z) = 3/(z − 1),
and from Eq. (22) we see that one solution to

Eq. (19) is y1 = z/(1− z)2. Substituting for p and

y1 in Eq. (23) we have

y2(z) = z
(1−z)2

∫ z (1−u)4

u2 exp
(
− ∫ u 3

v−1dv
)

du

= z
(1−z)2

∫ z (1−u)4

u2 exp[−3 ln(u− 1)] du

= z
(1−z)2

∫ z u−1
u2 du

= z
(1−z)2

(
ln z + 1

z

)
.
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The derivative method

The method begins with the derivation of a

recurrence relation for the coefficients an in the

Frobenius series solution. However, rather than

putting σ = σ1 in this recurrence relation to

evaluate the first series solution, we instead keep σ

as a variable parameter. This means that the

computed an are functions of σ and the computed

solution is now a function of z and σ

y(z, σ) = zσ
∞∑

n=0

an(σ)zn. (24)

Let

L =
d2

dx2
+ p(z)

d

dx
+ q(z),

The series Ly(z, σ) will contain only a term in zσ,

since the recurrence relation defining the an(σ) is

such that these coefficients vanish for higher powers

of z. But the coefficients of zσ is simply the LHS of

the indicial equation.

36



Therefore, if the roots of the indicial equation are

σ = σ1 and σ = σ2, it follows that

Ly(z, σ) = a0(σ − σ1)(σ − σ2)zσ. (25)

Thus, for y(z, σ) to be a solution of the ODE

Ly = 0, σ must equal σ1 or σ2. For simplicity, we

shall set a0 = 1 in the following discussion.

Let us first consider the case in which the two roots

of the indicial equation are equal, σ1 = σ2. From

Eq. (25) we then have

Ly(z, σ) = (σ − σ1)2zn.

Differentiating this equation with respect to σ, we

obtain

∂

∂σ
[Ly(z, σ)] = (σ − σ1)2zσ ln z + 2(σ − σ1)zσ,

which equal zero if σ = σ1. But since ∂/∂σ and L
are operators that differentiate with respect to

different variables, we can reverse their order, so that

L
[

∂

∂σ
y(z, σ)

]
= 0 at σ = σ1.
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Hence the function in square brackets, evaluated at

σ = σ1, and denoted by
[

∂

∂σ
y(z, σ)

]

σ=σ1

, (26)

is also a solution of the original ODE Ly = 0, and is

the second linearly independent solution.

The case by which the roots of the indicial equation

differ by an integer is now treated. In Eq. (25),

since L differentiates with respect to z we may

multiply Eq. (25) by any function of σ, say σ − σ2,

and take this function inside L on the LHS to obtain

L[(σ − σ2)y(z, σ)] = (σ − σ1)(σ − σ2)2zσ. (27)

Therefore the function

[(σ − σ2)y(z, σ)]σ=σ2

is also a solution of the ODE Ly = 0.
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Since this function is not linearly independent with

y(z, σ1), we must find another solution.

Differentiating Eq. (27) with respect to σ, we find

∂

∂σ
{L[(σ − σ2)y(z, σ)]} = (σ − σ2)2zσ

+2(σ − σ1)(σ − σ2)zσ + (σ − σ1)(σ − σ2)2zσ ln z,

which is equal to zero if σ = σ2. Therefore,

L
{

∂

∂σ
[(σ − σ2)y(z, σ)]

}
= 0 at σ = σ2,

and so the function
{

∂

∂σ
[(σ − σ2)y(z, σ)]

}

σ=σ2

(28)

is also a solution of the original ODE Ly = 0, and is

the second linearly independent solution.
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Example

Find a second solution to Eq. (19) using the

derivative method.

Answer

From Eq. (21) the recurrence relation (with σ as a

parameter) id given by

(n + σ − 1)an = (n + σ)an−1.

Setting a0 = 1 we find that the coefficients have the

particularly simple form an(σ) = (σ + n)/σ. We

therefore consider the function

y(z, σ) = zσ
∞∑

n=0

an(σ)zn = zσ
∞∑

n=0

σ + n

σ
zn.

The smaller toot of the indicial equation for

Eq. (19) is σ2 = 0, and so from Eq. (28) a second

linearly independent solution to the ODE is

{
∂

∂σ
[σy(z, σ)]

}

σ=0

=

{
∂

∂σ

[
zσ

∞∑
n−0

(σ + n)zn

]}

σ=0

.
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The derivative with respect to σ is given by

∂

∂σ

[
zσ

∞∑
n=0

(σ + n)zn

]
= zσ ln z

∞∑
n=0

(σ + n)zn

+zσ
∞∑

n=0

zn,

which on setting σ = 0 gives the second solution

y2(z) = ln z
∞∑

n=0

nzn +
∞∑

n=0

zn

=
z

(1− z)2
ln z +

1
1− z

=
z

(1− z)2

(
ln z +

1
z
− 1

)
.
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Series form of the second solution

Let us consider the case when the two solutions of

the indicial equation are equal. In this case, a

second solution is given by Eq. (26),

y2(z) =
[
∂y(z, σ)

∂σ

]

σ=σ1

= (ln z)zσ1

∞∑
n=0

an(σ1)zn

+zσ1

∞∑
n=0

[
dan(σ)

dσ

]

σ=σ1

zn

= y1(z) ln z + zσ1

∞∑
n=1

bnzn,

where bn = [dan(σ)/dσ]σ=σ1 .
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In the case where the roots of the indicial equation

differ by an integer, then from Eq. (28) a second

solution is given by

y2(z) =
{

∂

∂σ
[(σ − σ2)y(z, σ)]

}

σ=σ2

= ln z

[
(σ − σ2)zσ

∞∑
n=0

an(σ)zn

]

σ=σ2

+zσ2
∑
n=0

[
d

dσ
(σ − σ2)an(σ)

]

σ=σ2

zn.

But (σ − σ2)y(z, σ)] at σ = σ2 is just a multiple of

the first solution y(z, σ1). Therefore the second

solution is of the form

y2(z) = cy1(z) ln z + zσ2

∞∑
n=0

bnzn,

where c is a constant.
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Polynomial solutions

Example

Find the power series solutions about z = 0 of

y′′ − 2zy′ + λy = 0. (29)

For what values of λ does the equation possess a

polynomial solution? Find such a solution for λ = 4.

Answer

z = 0 is an ordinary point of Eq. (29) and so we

look for solutions of the form y =
∑∞

n=0 znzn.

Substituting this into the ODE and multiplying

through by z2, we find

∞∑
n=0

[n(n− 1)− 2z2n + λz2]anzn = 0.
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By demanding that the coefficients of each power of

z vanish separately we derive the recurrence relation

n(n− 1)an − 2(n− 2)an−2 + λan−2 = 0,

which may be rearranged to give

an =
2(n− 2)− λ

n(n− 1)
an−2 for n ≥ 2. (30)

The odd and even coefficients are therefore

independent of one another, and two solutions to

Eq. (29) may be derived. We sither set a1 = 0 and

a0 = 1 to obtain

y1(z) = 1−λ
z2

2!
−λ(4−λ)

z4

4!
−λ(4−λ)(8−λ)

z6

6!
−· · · ,
(31)

or set a0 = 0 and a1 = 1 to obtain

y2(z) = z − (2− λ)
z3

3!
− (2− λ)(6− λ)

z5

5!

−(2− λ)(6− λ)(10− λ)
z7

7!
− · · · .
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Now from the recurrence relation Eq. (30) we see

that for the ODE to possess a polynomial solution

we require λ = 2(n− 2) for n ≥ 2, or more simply

λ = 2n for n ≥ 0, i.e. λ must be an even positive

integer. If λ = 4 then from Eq. (31) the ODE has

the polynomial solution

y1(z) = 1− 4z2

2!
= 1− 2z2.

ALTERNATIVE SOLUTION:

We assume a polynomial solution to Eq. (29) of the

form y =
∑N

n=0 anzn. Substituting this form into

Eq. (29) we find

∞∑
n=0

[n(n− 1)anzn−2 − 2znanzn−1 + λnanzn] = 0.

Starting with the highest power of z, we demand

that the coefficient of zN vanishes. We require

−2N + λ = 0 or λ = 2N .
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Legendre’s equation

Legendre’s equation is

(1− z2)y′′ − 2zy′ + l(l + 1)y = 0. (32)

In normal usage, the variable z is the cosine of the

polar angle in spherical polars, and thus −1 ≤ z ≤ 1.

The parameter l is a given real number, and any

solution of Eq. (32) is called a Legendre function.

z = 0 is an ordinary point of Eq. (32), and so there

are two linearly independent solutions of the form

y =
∑∞

n=0 anzn. Substituting we find

∞∑
n=0

[n(n− 1)anzn−2 − n(n− 1)anzn

−2nanzn + l(l + 1)anzn] = 0,

which on collecting terms gives

∞∑
n=0

{(n + 2)(n + 1)an+2

−[n(n + 1)− l(l + 1)]an}zn = 0.
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The recurrence relation is therefore

an+2 =
[n(n + 1)− l(l + 1)]

(n + 1)(n + 2)
an, (33)

for n = 0, 1, 2, . . .. If we choose a0 = 1 and a1 = 0
then we obtain the solution

y1(z) = 1− l(l + 1)
z2

2!

+(l − 2)l(l + 1)(l + 3)
z4

4!
− · · · ,(34)

whereas choosing a0 = 0 and a1 = 1, we find a

second solution

y2(z) = z − (l − 1)(l + 2)
z3

3!

+(l − 3)(l − 1)(l + 2)(l + 4)
z5

5!
− · · · .

(35)

Both series converge for |z| < 1, so their radius of

convergence is unity. Since Eq. (34) contains only

even powers of z and (35) only odd powers, we can

write the general solution to Eq. (32) as

y = c1y1 + c2y2 for |z| < 1.
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General solution for integer l

Now, if l is an integer in Eq. (32), i.e. l = 0, 1, 2, . . .

then the recurrence relation Eq. (33) gives

al+2 =
[l(l + 1)− l(l + 1)]

(l + 1)(l + 2)
al = 0,

so that the series terminates and we obtain a

polynomial solution of order l. These solutions are

called Legendre polynomial of order l; they are

written Pl(z) and are valid for all finite z. It is

convenient to normalize Pl(z) in such a way that

Pl(1) = 1, and as a consequence Pl(−1) = (−1)l.

The first few Legendre polynomials are given by

P0(z) = 1 P1(z) = z

P2(z) =
1
2
(3z2 − 1) P3(z) =

1
2
(5z3 − 3z)

P4(z) =
1
8
(35z4 − 30z2 + 3)

P5(z) =
1
8
(63z5 − 70z3

+15z).
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According to whether l is an even or odd integer

respectively, either y1(z) in Eq. (34) or y2(z) in

Eq. (35) terminates to give a multiple of the

corresponding Legendre polynomial Pl(z). In either

case, however, the other series does not terminate

and therefore converges only for |z| < 1. According

to whether l is even or odd we define Legendre

function of the second kind as Ql(z) = αly2(z) or

Ql(z) = βly1(z) respectively, where the constants αl

and βl are conventionally taken to have the values

αl =
(−1)l/22l[(l/2)!]2

l!
for l even, (36)

βl =
(−1)(l+1)/22l−1{[(l − 1)/2]!}2

l!
for l odd.

(37)

50



These normalization factors are chosen so that the

Ql(z) obey the same recurrence relations as the

Pl(z). The general solution of Legendre’s equation

for integer l is therefore

y(z) = c1Pl(z) + c2Ql(z), (38)

where Pl(z) is a polynomial of order l and so

converges for all z, and Ql(z) is an infinite series

that converges only for |z| < 1.
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Example

Use the Wronskian method to find a closed-form

expression for Q0(z).

Answer

From Eq. (23) a second solution to Legendre’s

equation Eq. (32), with l = 0, is

y2(z) = P0(z)
∫ z 1

[P0(u)]2
exp

(∫ u 2v

1− v2
dv

)
du

=
∫ z

exp
[− ln(1− u2)

]
du

=
∫ z du

(1− u2)
=

1
2

ln
(

1 + z

1− z

)
. (39)

Expanding the logarithm in Eq. (39) as a Maclaurin

series we obtain

y2(z) = z +
z3

3
+

z5

5
+ · · · .
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Comparing this with the expression for Q0(z), using

Eq. (35) with l = 0 and the normalization Eq. (36),

we find that y2(z) is already correctly normalized,

and so

Q0(z) =
1
2

ln
(

1 + z

1− z

)
.
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Properties of Legendre polynomials

Rodrigues’ formula

Rodrigues’ formula for the Pl(z) is

Pl(z) =
1

2ll!
dl

dzl
(z2 − 1)l. (40)

To prove that this is a representation, we let

u = (z2 − 1)l, so that u′ = 2lz(z2 − 1)l−1 and

(z2 − 1)u′ − 2lzu = 0.

If we differentiate this expression l + 1 times using

Leibnitz’ theorem, we obtain
[
(z2 − 1)u(l+2) + 2z(l + 1)u(l+1) + l(l + 1)u(l)

]

−2l
[
zu(l+1) + (l + 1)u(l)

]
= 0,

which reduces to

(z2 − 1)u(l+2) + 2zu(l+1) − l(l + 1)u(l) = 0.
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Changing the sign all through, and comparing the

resulting expression with Legendre’s equation

Eq. (32), we see that u(l) satisfies the same

equation as Pl(z), so that

u(l)(z) = clPl(z), (41)

for some constant cl that depends on l. To establish

the value of cl, we note that the only term in the

expression for the lth derivative of (z2 − 1)l that

does not contain a factor z2 − 1, and therefore does

not vanish at z = 1, is (2z)ll!(z2 − 1)0. Putting

z = 1 in Eq. (41) therefore shows that cl = 2ll!,
thus completing the proof of Eq. (40).
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Example

Use Rodrigues’ formula to show that

Il =
∫ 1

−1

Pl(z)Pl(z) dz =
2

2l + 1
. (42)

Answer

This is obvious for l = 0, and so we assume l ≥ 1.

Then, by Rodrigues’ formula

Il =
1

22l(l!)2

∫ 1

−1

[
dl(z2 − 1)l

dzl

] [
dl(z2 − 1)l

dzl

]
dz.

Repeated integration by parts, with all boundary

terms vanishing, reduces this to

Il =
(−1)l

22l(l!)2

∫ 1

−1

(z2 − 1)l d2l

dz2l
(z2 − 1)l dz

=
(2l)!

22l(l!)2

∫ 1

−1

(1− z2)l dz.
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If we write

Kl =
∫ 1

−1

(1− z2)l dz,

then integration by parts (taking a factor 1 as the

second part) gives

Kl =
∫ 1

−1

2lz2(1− z2)l−1dz.

Writing 2lz2 as 2l − 2l(1− z2) we obtain

Kl = 2l

∫ 1

−1

(1− z2)l−1dz − 2l

∫ 1

−1

(1− z2)l dz,

= 2lKl−1 − 2lKl

and hence the recurrence relation

(2l + 1)Kl = 2lKl−1. We therefore find

Kl =
2l

2l + 1
2l − 2
2l − 1

· · · 2
3
K0

= 2ll!
2ll!

(2l + 1)!
2 =

22l+1(l!)2

(2l + 1)!
.
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Another property of the Pl(z) is their mutual

orthogonality

∫ 1

−1

Pl(z)Pk(z) dz = 0 if l 6= k. (43)
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Generating function for Legendre
polynomials

The generating function for, say, a series of

functions fn(z) for n = 0, 1, 2, . . . is a function

G(z, h), containing as well as z a dummy variable h,

such that

G(z, h) =
∞∑

n=0

fn(z)hn,

i.e. fn(z) is the coefficient of hn in the expansion of

G in powers of h.

Let us consider the functions Pn(z) defined by the

equation

G(z, h) = (1−2zh+h2)−1/2 =
∞∑

n=0

Pn(z)hn. (44)

The functions so defined are identical to the

Legendre polynomials and the function

(1− 2zh + h2)−1/2 is the generating function for

them.
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In the following, dPn(z)/dz will be denoted by P ′n.

First, we differentiate the defining equation Eq. (44)

with respect to z to get

h(1− 2zh + h2)−3/2 =
∑

P ′nhn. (45)

Also. we differentiate Eq. (44) with respect to h to

yield

(z − h)(1− 2zh + h2)−3/2 =
∑

nPnhn−1. (46)

Eq. (45) can be written suing Eq. (44) as

h
∑

Pnhn = (1− 2zh + h2)
∑

P ′nhn,

and thus equating coefficients of hn+1 we obtain

the recurrence relation

Pn = P ′n+1 − 2zP ′n + P ′n−1. (47)

Eqs. (45) and (46) can be combined as

(z − h)
∑

P ′nhn = h
∑

nPnhn−1,

from which the coefficient of hn yields a second

recurrence relation

zP ′n − P ′n−1 = nPn. (48)
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Eliminating P ′n−1 between Eqs. (47) and (48) gives

the further result

(n + 1)Pn = P ′n+1 − zP ′n. (49)

If we now take the result Eq. (49) with n replaced

by n− 1 and add z times Eq. (48) to it, we obtain

(1− z2)P ′n = n(Pn−1 − zPn).

Finally, differentiating both sides with respect to z

and using Eq. (48) again, we find

(1− z2)P ′′n − 2zP ′n = n[(P ′n−1 − zP ′n)− Pn]

= n(−nPn − Pn)

= −n(n + 1)Pn,

and so the Pn defined by Eq. (44) satisfies

Legendre’s equation. It only remains to verify the

normalization. This is easily done at z = 1 when G

becomes

G(1, h) = [(1− h)2]−1/2 = 1 + h + h2 + · · · ,
and thus all the Pn so defined have Pn(1) = 1.
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Bessel’s equation

Bessel’s equation has the form

z2y′′ + zy′ + (z2 − ν2)y = 0, (50)

where the parameter ν is a given number, which we

may take as ≥ 0 with no loss of generality. In

Bessel’s equation, z is usually a multiple of a radial

distance and therefore ranges from 0 to ∞.

Rewriting Eq. (50) we have

y′′ +
1
z
y′ +

(
1− ν2

z2

)
y = 0. (51)

By inspection z = 0 is a regular singular point;

hence we try a solution of the form

y = zσ
∑∞

n=0 anzn. Substituting this into Eq. (51)

and multiplying the resulting equation by z2−σ, we

obtain
∞∑

n=0

[
(σ + n)(σ + n− 1) + (σ + n)− ν2

]
anzn

+
∞∑

n=0

anzn+2 = 0,
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which simplifies to

∞∑
n=0

[(σ + n)2 − ν2]anzn +
∞∑

n=0

anzn+2 = 0.

Considering coefficients of z0 we obtain the indicial

equation

σ2 − ν2 = 0,

so that σ = ±ν. For coefficients of higher powers of

z we find

[
(σ + 1)2 − ν2

]
a1 = 0, (52)

[
(σ + n)2 − ν2

]
an + an−2 = 0 for n ≥ 2.

(53)

Substituting σ = ±ν into Eqs. (52) and (53) we

obtain the recurrence relations

(1± 2ν)a1 = 0, (54)

n(n± 2ν)an + an−2 = 0 for n ≥ 2. (55)

63



General solution for non-integer ν

If ν is a non-integer, then in general the two roots

of the indicial equation, σ1 = ν and σ2 = −ν, will

not differ by an integer, and we may obtain two

linearly independent solutions. Special cases od

arise, however, when ν = m/2 for m = 1, 3, 5, . . .,

and σ1 − σ2 = 2ν = m is an (odd positive) integer.

For such cases, we may always obtain a solution in

the form of Frobenius series corresponding to the

larger root σ1 = ν = m/2. For the smaller root

σ2 = −ν = −m/2, however, we must determine

whether a second Frobenius series solution is

possible by examining the recurrence relation

Eq. (55), which reads

n(n−m)an + an−2 = 0 for n ≥ 2.

Since m is an odd positive integer in this case, we

can use this recurrence relation (starting with

a0 6= 0) to calculate a2, a4, a6, . . .. It is therefore

possible to find a second solution in the form of a

Frobenius series corresponding to the smaller root

σ2.

64



Therefore, in general, for non-integer ν we have

from Eqs. (54) and (55)

an = − 1
n(n± 2ν)

an−2 for n = 2, 4, 6, . . . ,

= 0 for n = 1, 3, 5, . . . .

Setting a0 = 1 in each case, we obtain the two

solutions

y±ν(z) = z±ν

[
1− z2

2(2± 2ν)
+

z4

2× 4(2± 2ν)(4± 2ν)
− · · ·

]
.

We set

a0 =
1

2±νΓ(1± ν)
,

where Γ(x) is the gamma function.
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The two solutions of Eq. (50) are then written as

Jν(z) and J−ν(z), where

Jν(z) =
1

Γ(ν + 1)

(z

2

)ν
[
1− 1

ν + 1

(z

2

)2

+
1

(ν + 1)(ν + 2)
1
2!

(z

2

)4

− · · ·
]

=
∞∑

n=0

(−1)n

n!Γ(ν + n + 1)

(z

2

)ν+2n

; (56)

and replacing ν by −ν gives J−ν(z). The functions

Jν(z) and J−ν(z) are called Bessel functions of the

first kind, of order ν. Since the first term of each

series is a finite non-zero multiple of zν and z−ν

respectively, if ν is not an integer, Jν(z) and J−ν(z)
are linearly independent. Therefore, for non-integer

ν the general solution of Bessel’s equation Eq. (50)

is

y(z) = c1Jν(z) + c2J−ν(z). (57)
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General solution for integer ν

Let us consider the case when ν = 0, so that the

two solutions to the indicial equation are equal, and

we obtain one solution in the form of a Frobenius

series. From Eq. (56), this is given by

J0(z) =
∞∑

n=0

(−1)n22n

22nn!Γ(1 + n)

= 1− z2

22
+

z4

2242
− z6

224262
+ · · · .

In general, however, if ν is a positive integer then

the solutions to the indicial equation differ by an

integer. For the larger root, σ1 = ν, we may find a

solution Jν(z) for ν = 1, 2, 3, . . . , in the form of a

Frobenius series given by Eq. (56).

For the smaller root σ2 = −ν, however, the

recurrence relation Eq. (55) becomes

n(n−m)an + an−2 = 0 for n ≥ 2,

where m = 2ν is now an even positive integer, i.e.

m = 2, 4, 6, . . ..
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Starting with a0 6= 0, we may calculate

a2, a4, a6, . . ., but we see that when n = m the

coefficient an is infinite, and the method fails to

produce a second solution.

By replacing ν by −ν in the definition of Jν(z),
Eq. (56), we have, for integer ν,

J−ν(z) = (−1)νJν(z)

and hence that Jν(z) and J−ν(z) are linearly

dependent. One then defines the function

Yν(z) =
Jν(z) cos νπ − J−ν(z)

sin νπ
, (58)

which is called a Bessel’s function of the second

kind or order ν. For non-integer ν, Yν(z) is linearly

independent of Jν(z). It may also be shown that

the Wronskian of Jν(z) and Yν(z) is non-zero for all

values of ν. Hence Jν(z) and Yν(z) always

constitute a pair of independent solutions. The

expression Eq. (58) does, however, become an

indeterminate form 0/0 when ν is an integer.
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This is so because for integer ν we have

cos νπ = (−1)ν and J−ν(z) = (−1)νJν(z). For

integer ν, we set

Yν(z) = lim
µ→ν

[
Jµ(z) cos µπ − J−µ(z)

sin µπ

]
, (59)

which gives a linearly independent second solution

for integer ν. Therefore, we may write the general

solution of Bessel’s equation, valid for all ν, as

y(z) = c1Jν(z) + c2Yν(z). (60)
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Properties of Bessel functions

Example

Prove the recurrence relation

d

dz
[zνJν(z)] = zνJν−1(z). (61)

Answer

From the power series definition Eq. (56) of Jν(z),
we obtain

d

dz
[zνJν(z)] =

d

dz

∞∑
n=0

(−1)nz2ν+2n

2ν+2nn!Γ(ν + n + 1)

=
∞∑

n=0

(−1)nz2ν+2n−1

2ν+2n−1n!Γ(ν + n)

= zν
∞∑

n=0

(−1)nz(ν−1)+2n

2(ν−1)+2nn!Γ(ν − 1 + n + 1)

= zνJν−1(z).
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Similarly, we have

d

dz
[z−νJν(z)] = −z−νJν+1(z). (62)

From Eqs. (61) and (62) the remaining recurrence

relations may be derived. Expanding out the

derivative on the LHS of Eq. (61) and dividing

through by zν−1, we obtain the relation

zJ ′ν(z) + νJν(z) = zJν−1(z). (63)

Similarly, by expanding out the derivative on the

LHS of Eq. (62), and multiplying through by zν+1,

we find

zJ ′ν(z)− νJν(z) = −zJν+1(z). (64)

Adding Eq. (63) and Eq. (64) and dividing through

by z gives

Jν−1(z)− Jν+1(z) = 2J ′ν(z). (65)

Finally, subtracting Eq. (64) from Eq. (63) and

dividing through by z gives

Jν−1(z) + Jν+1(z) =
2ν

z
Jν(z). (66)
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Mutually orthogonality of Bessel functions

By definition, the function Jν(z) satisfies Bessel’s

equation Eq. (50),

z2y′′ + zy′ + (z2 − ν2)y = 0.

Let us instead consider the functions f(z) = Jν(λz)
and g(z) = Jν(µz), which respectively satisfy the

equations

z2f ′′ + zf ′ + (λ2z2 − ν2)f = 0, (67)

z2g′′ + zg′ + (µ2z2 − ν2)g = 0. (68)
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Example

Show that f(z) = Jν(λz) satisfies Eq. (67).

Answer

If f(z) = Jν(λz) and we write w = λz, then

df

dz
= λ

dJν(w)
dw

and
d2f

dz2
= λ2 d2Jν(w)

dw2
.

When these expressions are substituted, the LHS of

Eq. (67) becomes

z2λ2 d2Jν(w)
dw2

+ zλ
dJν(w)

dw
+ (λ2z2 − ν2)Jν(w)

= w2 d2Jν(w)
dw2

+ w
dJν(w)

dw
+ (w2 − ν2)Jν(w).

But, from Bessel’s equation itself, this final

expression is equal to zero, thus verifying that f(z)
does satisfy Eq. (67).
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Now multiplying Eq. (68) by f(z) and Eq. (67) by

g(z) and subtracting gives

d

dz
[z(fg′ − gf ′)] = (λ2 − µ2)zfg, (69)

where we have used the fact that

d

dz
[z(fg′ − gf ′)] = z(fg′′ − gf ′′) + (fg′ − gf ′).

By integrating Eq. (69) over any given range z = a

to z = b, we obtain

∫ b

a

zf(z)g(z) dz =
1

λ2 − µ2
[zf(z)g′(z)

−zg(z)f ′(z)]ba ,

which, on setting f(z) = Jν(λz) and

g(z) = Jν(µz), becomes

∫ b

a

zJν(λz)Jν(µz) dz =
1

λ2 − µ2
[µzJν(λz)J ′ν(µz)

−λzJν(µz)J ′ν(λz)]ba . (70)
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If λ 6= µ and the interval [a, b] is such that the

expression on the RHS of Eq. (70) equals zero we

obtain the orthogonality condition

∫ b

a

zJν(λz)Jν(µz) dz = 0. (71)
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Generating function for Bessel functions

The Bessel functions Jν(z), where ν is an integer,

cab be described by a generating function, which is

given by

G(z, h) = exp
[
z

2

(
h− 1

h

)]
=

∞∑
n=−∞

Jn(z)hn.

(72)
By expanding the exponential as a power series, it

can be verified that the functions Jn(z) defined by

Eq. (72) are Bessel functions of the first kind.
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Example

Use the generating function Eq. (72) to prove, for

integer ν, the recurrence relation Eq. (66), i.e.

Jν−1(z) + Jν+1(z) =
2ν

z
Jν(z).

Answer

Differentiating G(z, h) with respect to h, we obtain

∂G(z, h)
∂h

=
z

2

(
1 +

1
h2

)
G(z, h) =

∞∑
−∞

nJn(z)hn−1,

which can be written using Eq. (72) again as

z

2

(
1 +

1
h2

) ∞∑
−∞

Jn(z)hn =
∞∑
−∞

nJn(z)hn−1.

Equating coefficients of hn we obtain

z

2
[Jn(z) + Jn+2(z)] = (n + 1)Jn+1(z),

which on replacing n by ν − 1 gives the required

recurrence relation.
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