
Higher-order ordinary

differential equations
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A linear ODE of general order n has the form

an(x)
dny

dxn
+an−1(x)

dn−1y

dxn−1
+· · ·+a1(x)

dy

dx
+a0(x)y = f(x).

(1)
If f(x) = 0 then the equation is called

homogeneous; otherwise it is inhomogeneous. The

general solution to Eq. (1) will contain n arbitrary

constants.

In order to solve any equation of the form (1), we

must first find the general solution of the

complementary equation:

an(x)
dny

dxn
+an−1(x)

dn−1y

dxn−1
+· · ·+a1(x)

dy

dx
+a0(x)y = 0.

(2)
The general solution of Eq. (2) will contain n

linearly independent functions, say

y1(x), y2(x), · · · , yn(x). Then the general solution is

given by

yc(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x), (3)

where the cm are arbitrary constants that may be

determined if n boundary conditions are provided.
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For n functions to be linearly independent over an

interval, there must not exist any set of constants

c1, c2, . . . , cn such that

c1y1(x) + c2y2(x) + · · ·+ cnyn(x) = 0 (4)

over that interval except for the trivial case

c1 = c2 = · · · = cn = 0.

By repeatedly differentiating Eq. (4) n− 1 times in

all, we obtain n simultaneous equations for

c1, c2, . . . , cn:

c1y1(x) + c2y2(x) + · · ·+ cnyn(x) = 0

c1y
′
1(x) + c2y

′
2(x) + · · ·+ cny′n(x) = 0

... (5)

c1y
(n−1)
1 (x) + c2y

(n−1)
2 (x) + · · ·+ cny(n−1)

n (x) = 0,

where the prime denotes differentiation with respect

to x.
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The n functions y1(x), y2(x), . . . , yn(x) are linearly

independent over an interval if

W (y1, . . . , yn) =

∣∣∣∣∣∣∣∣∣∣∣

y1 y2 · · · yn

y′1
...

. . .

y
(n−1)
1 y

(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣

6= 0

(6)
over that interval; W (y1, . . . , yn) is called the

Wronskian of the set of functions.

If f(x) 6= 0, the general solution of Eq. (1) is given

by

y(x) = yc(x) + yp(x), (7)

where yp(x) is the particular integral, which can be

any function that satisfies Eq. (1) directly, provided

it is linearly independent of yc(x).
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Linear equations with constant coefficients

If the am in Eq. (1) are constants, then we have

an
dny

dxn
+an−1

dn−1y

dxn−1
+· · ·+a1

dy

dx
+a0y = f(x). (8)

Finding the complementary function yc(x)

The complementary function must satisfy

an
dny

dxn
+ an−1

dn−1y

dxn−1
+ · · ·+ a1

dy

dx
+ a0y = 0 (9)

and contain n arbitrary constants. Substituting a

solution of the form y = Aeλx into Eq. (9), we

arrive at the following auxiliary equation

anλn + an−1λ
n−1 + · · ·+ a1λ + a0 = 0. (10)
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In general, the auxiliary equation has n roots, say

λ1, · · · , λn. Some roots may be repeated, and some

complex. Three main cases are as follows:

1. All roots real and distinct. The n solutions to

Eq. (9) are exp(λmx) for m = 1 to n. The

complementary function is therefore

yc(x) = c1e
λ1x + c2e

λ2x + · · ·+ cneλnx. (11)

2. Some roots complex. If one of the roots of the

auxiliary equation is complex, say α + iβ, then

its complex conjugate is also a root. So, we

write

c1e
(α+iβ)x + c2e

(α−iβ)x

= eαx(d1 cosβx + d2 sin βx)

= Aeαx





sin

cos



 (βx + φ) (12)

where A and φ are arbitrary constants.
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3. Some roots repeated. Suppose λ1 occurs k

times (k > 1) as a root of the auxiliary

equation. Then, the complementary function is

given by

yc(x) = (c1 + c2x + · · ·+ ckxk−1)eλ1x

+ck+1e
λk+1x + · · ·+ cneλnx.(13)

If more than one root is repeated, say λ2 with l

occurrence, then the complementary function

reads

yc(x) = (c1 + c2x + · · ·+ ckxk−1)eλ1x

+(ck+1 + ck+2x + · · ·+ ck+lx
l−1)eλ2x

+ck+l+1e
λk+l+1x + · · ·+ cneλnx. (14)
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Example

Find the complementary function of the equation

d2y

dx2
− 2

dy

dx
+ y = ex. (15)

Answer

Setting the RHS to zero, substituting y = Aeλx and

dividing through by Aeλx we obtain the auxiliary

equation

λ2 − 2λ + 1 = 0.

This equation has the repeated root λ = 1 (twice).

Therefore the complementary function is

yc(x) = (c1 + c2x)ex.
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Finding the particular integral yp(x)

If f(x) contains only polynomial, exponential, or

sine and cosine terms, then by assuming a trial

function for yp(x) of similar form and substituting it

into Eq. (9), yp(x) can be deduced. Standard trial

functions are:

1. If f(x) = aerx then try yp(x) = berx.

2. If f(x) = a1 sin rx + a2 cos rx (a1 or a2 may be

zero) then try yp(x) = b1 sin rx + b2 cos rx.

3. If f(x) = a0 + a1x + · · ·+ aNxN (some am

may be zero) then try

yp(x) = b0 + b1x + · · ·+ bNxN .

4. If f(x) is the sum or product of any of the

above then try yp(x) as the sum or product of

the corresponding individual trial functions.
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Example

Find a particular integral of the equation

d2y

dx2
− 2

dy

dx
+ y = ex.

Answer

Assume yp(x) = bex. However, since the

complementary function of this equation is

yc(x) = (c1 + c2x)ex, we see that ex is already

contained in it, as indeed is xex. Multiplying the

first guess by the lowest necessary integer power of

x such that it does not appear in yc(x), we

therefore try yp(x) = bx2ex. Substituting this into

the ODE, we find that b = 1/2, so the particular

integral is given by yp(x) = x2ex/2.
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Example

Solve
d2y

dx2
+ 4y = x2 sin 2x (16)

Answer

The auxiliary equation is

λ2 + 4 = 0 ⇒ λ = ±2i. (17)

Therefore the complementary function is given by

yc(x) = c1e
2ix + c2e

−2ix = d1 cos 2x + d2 sin 2x

(18)

First, assume that the particular integral is given by

(ax2 + bx + c)(d sin 2x + e cos 2x) (19)

However, since sin 2x and cos 2x already appear in

the complementary function, the trial function must

be

(ax3 + bx2 + cx)(d sin 2x + e cos 2x). (20)
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Substituting this into Eq. (14) to fix the constants

in Eq. (20), we find the particular integral to be

yp(x) = −x3

12
cos 2x +

x2

16
sin 2x +

x

32
cos 2x. (21)

The general solution to Eq. (16) then reads

y(x) = yc(x) + yp(x)

= d1 cos 2x + d2 sin 2x− x3

12
cos 2x

+
x2

16
sin 2x +

x

32
cos 2x.
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Linear equations with variable coefficients

The Legendre and Euler linear equations

Legendre’s linear equation has the form

an(αx+β)n dny

dxn
+· · ·+a1(αx+β)

dy

dx
+a0y = f(x),

(22)
where α, β and the an are constants, and may be

solved by making the substitution αx + β = et. We

then have

dy

dx
=

dt

dx

dy

dt
=

α

αx + β

dy

dt

d2y

dx2
=

d

dx

dy

dx
=

α2

(αx + β)2

(
d2y

dt2
− dy

dt

)
,

and so on for higher derivatives.
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Therefore we can write the terms of Eq. (22) as

(αx + β)
dy

dx
= α

dy

dt
,

(αx + β)2
d2y

dx2
= α2 d

dt

(
d

dt
− 1

)
y,

... (23)

(αx + β)n dny

dxn
= αn d

dt

(
d

dt
− 1

)
· · ·

(
d

dt
− n + 1

)
y.

Substituting Eq. (23) into the Eq. (22), the latter

becomes a linear ODE with constant coefficients,

anαn d

dt

(
d

dt
− 1

)
· · ·

(
d

dt
− n + 1

)
y + · · ·

+a1α
dy

dt
+ a0y = f

(
et − β

α

)
.
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A special case of Legendre’s equation, with α = 1
and β = 0, is Euler’s equation,

anxn dny

dxn
+ · · ·+ a1x

dy

dx
+ a0y = f(x), (24)

and may be solved by substituting x = et.

Alternatively, in the special case where f(x)− 0 in

Eq. (24), substituting y = xλ leads to a simple

algebraic equation in λ, which can be solved to yield

the solution to Eq. (24).
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Example

Solve

x2 d2y

dx2
+ x

dy

dx
− 4y = 0 (25)

by both methods discussed above.

Answer

First, we make the substitution x = et, which gives

d

dt

(
d

dt
− 1

)
y +

dy

dt
− 4y = 0 ⇒ d2y

dt2
− 4y = 0.

(26)
The general solution of Eq. (25) is therefore

y = c1e
2t + c2e

−2t = c1x
2 + c2x

−2.
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Since the RHS of Eq. (25) is zero, we can reach the

same solution by instead substituting y = xλ into

Eq. (25). This gives

λ(λ− 1)xλ + λxλ − 4xλ = 0,

which reduces to

(λ2 − 4)xλ = 0.

This has the solutions λ = ±2, so the general

solution is

y = c1x
2 + c2x

−2.

17



Exact equations

Sometimes an ODE may be merely the derivative of

another ODE of one order lower. If this is the case

then the ODE is called exact. The nth-order linear

ODE

an(x)
dny

dxn
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = f(x), (27)

is exact if the LHS can be written as a simple

derivative,

an(x)
dny

dxn
+ · · ·+ a0(x)y

=
d

dx

[
bn−1(x)

dn−1y

dxn−1
+ · · ·+ b0(x)y

]
. (28)

For Eq. (28) to hold, we require

a0(x)−a′1(x)+a′′2(x)+· · ·+(−1)na(n)
n (x) = 0, (29)

where the prime denotes differentiation with respect

to x. If Eq. (29) is satisfied then a straightforward

integration leads to a new equation of one order

lower.
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Example

Solve

(1− x2)
d2y

dx2
− 3x

dy

dx
− y = 1. (30)

Answer

Comparing with Eq. (27), we have a2 = 1− x2,

a1 = −3x and a0 = −1. Therefore,

a0 − a′1 + a′′2 = 0, so Eq. (30) is exact and can

therefore be written in the form

d

dx

[
b1(x)

dy

dx
+ b0(x)y

]
= 1. (31)

Expanding the LHS of Eq. (31), we find

d

dx

(
b1

dy

dx
+ b0y

)
= b1

d2y

dx2
+ (b′1 + b0)

dy

dx
+ b′0y.

(32)

Comparing Eq. (30) and Eq. (32), we find

b1 = 1− x2, b′1 + b0 = −3x, b′0 = −1.
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These relations integrate consistently to give

b1 = 1− x2 and b0 = −x, so Eq. (30) can be

written as

d

dx

[
(1− x2)

dy

dx
− xy

]
= 1. (33)

Integrating Eq. (33) gives us directly the first-order

linear ODE

dy

dx
−

(
x

1− x2

)
y =

x + c1

1− x2
,

which can be solved to give

y =
c1 sin−1 x + c2√

1− x2
− 1.
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Partially known complementary function

Suppose we wish to solve the nth-order linear ODE

an(x)
dny

dxn
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = f(x), (34)

and we happen to know that u(x) is a solution of

Eq. (34) when the RHS is set to zero. By making

the substitution y(x) = u(x)v(x), we can transform

Eq. (34) into an equation of order n− 1 in dv/dx.

In particular, if the original equation is of second

order, then we obtain a first-order equation in

dv/dx. In this way, both the remaining term in the

complementary function and the particular integral

are found.
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Example

Solve
d2y

dx2
+ y = cosec x. (35)

Answer

The complementary function of Eq. (35) is

yc(x) = c1 sin x + c2 cosx,

Let u(x) = cosx and make the substitution

y(x) = v(x) cos x into Eq. (35). This gives

cosx
d2v

dx2
− 2 sin x

dv

dx
= cosec x, (36)

Writing Eq. (36) as

d2v

dx2
− 2 tan x

dv

dx
=

cosec x

cos x
, (37)

the integrating factor is given by

exp
{
−2

∫
tan x dx

}
= exp[2 ln(cos x)] = cos2 x.
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Multiplying through Eq. (37) by cos2 x, we obtain

d

dx

(
cos2 x

dv

dx

)
= cot x,

which integrates to give

cos2 x
dv

dx
= ln(sin x) + c1.

After rearranging and integrating again this becomes

v =
∫

sec2 x ln(sinx) dx + c1

∫
sec2 x dx

= tan x ln(sinx)− x + c1 tan x + c2.

Therefore the general solution to Eq. (35) is given by

y = c1 sin x + c2 cos+ sin x ln(sin x)− x cosx.
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variation of parameters

Suppose we wish to find the particular integral of

the equation

an(x)
dny

dxn
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = f(x), (38)

and the complementary function yc(x) is

yc(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x),

where the functions ym(x) are known. We assume a

particular integral of the form

yp(x) = k1(x)y1(x)+k2(x)y2(x)+ · · ·+kn(x)yn(x).
(39)

Since we have n arbitrary functions

k1(x), . . . , kn(x), but only one restriction on them

(namely the ODE), we must impose a further n− 1
constraints. We can choose these constraints to be

as convenient as possible.
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k′1(x)y1(x) + · · ·+ k′n(x)yn(x) = 0

k′1(x)y′1(x) + · · ·+ k′n(x)y′n(x) = 0
... (40)

k′1(x)y(n−2)
1 (x) + · · ·+ k′n(x)y(n−2)

n (x) = 0

k′1(x)y(n−1)
1 (x) + · · ·+ k′n(x)y(n−1)

n (x) =
f(x)
an(x)

.

The last of these equations is not a freely chosen

constraint, but must be satisfied given the previous

n− 1 constraints and the original ODE.

This choice of constraints is easily justified.

Differentiating Eq. (39) with respect to x, we obtain

y′p = k1y
′
1 + · · ·+ kny′n + (k′1y1 + · · ·+ k′nyn).

Let us define the expression in parenthesis to be

zero, giving the first equation in Eq. (40).
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Differentiating again we find

y′′p = k1y
′′
1 + · · ·+ kny′′n + (k′1y

′
1 + · · ·+ k′ny′n).

Once more, we set the expression in bracket to be

zero. We can repeat this procedure. This yields the

first n− 1 equations in Eq. (40). The mth

derivative of yp for m < n is then given by

y(m)
p = k1y

(m)
1 + · · ·+ kny(m)

n .

Differentiating yp once more we find its nth

derivative is given by

y(n)
p = k1y

(n)
1 +· · ·+kny(n)

n +(k′1y
(n−1)
1 +· · ·+k′ny(n−1)

n ).

Substituting the expression for y
(m)
p , m = 0 to n,

into the original ODE Eq. (38), we obtain

n∑
m=0

am(k1y
(m)
1 + · · ·+ kny(m)

n )

+an(k′1y
(n−1)
1 + · · ·+ k′ny(n−1)

n ) = f(x).
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Rearranging the sum over m on the LHS, we find

n∑
m=1

km(any(n)
m + · · ·+ a1y

′
m + a0ym)

+an(k′1y
(n−1)
1 + · · ·+ k′ny(n−1)

n ) = f(x). (41)

But since the functions ym are solutions of the

complementary equation of Eq. (38), we have (for

all m)

any(n)
m + · · ·+ a1y

′
m + a0ym = 0.

Therefore, Eq. (41) becomes

an(k′1y
(n−1)
1 + · · ·+ k′ny(n−1)

n ) = f(x),

which is the final equation given in Eq. (40).

Eq. (40) can be solved for the functions k′m(x),
which can be integrated to give km(x). The general

solution to Eq. (38) is then

y(x) = yc(x) + yp(x) =
n∑

m=1

[cm + km(x)]ym(x).
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Example

Use the variation of parameters to solve

d2y

dx2
+ y = cosec x, (42)

subject to the boundary conditions

y(0) = y(π/2) = 0.

Answer

The complementary function of Eq. (42) is

yc(x) = c1 sin x + c2 cosx.

We therefore assume a particular integral of the form

yp(x) = k1(x) sin x + k2(x) cos x,

and impose the additional constraints of Eq. (40),

k′1(x) sin x + k′2(x) cos x = 0,

k′1(x) cos x− k′2(x) sin x = cosec x.
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Solving these equations for k′1(x) and k′2(x) gives

k′1(x) = cos x cosec x = cot x,

k′2(x) = − sin x cosec x = −1.

Hence, ignoring the constants of integration, k1(x)
and k2(x) are given by

k1(x) = ln(sin x),

k2(x) = −x.

The general solution to the ODE, Eq. (42), is

therefore

y(x) = [c1 + ln(sin x)] sin x + (c2 − x) cos x.

Applying the boundary conditions

y(0) = y(π/2) = 0, we find c1 = c2 = 0, so that

y(x) = ln(sin x) sin x− x cos x.
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Green’s functions

Consider the equation,

an(x)
dny

dxn
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = f(x), (43)

and introduce a linear differential operator L acting

on y(x). That is, Eq. (43) is written as

Ly(x) = f(x). (44)

Suppose that a function G(x, z) exists (The Green’s

function) such that the general solution to Eq. (44),

which obeys some set of imposed boundary

conditions in the range a ≤ x ≤ b, is given by

y(x) =
∫ b

a

G(x, z)f(z) dz, (45)

where z is the integration variable. If we apply the

linear differential operator L to both sides of

Eq. (45), we obtain

Ly(x) =
∫ b

a

[LG(x, z)]f(z) dz = f(x). (46)
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Comparing of Eq. (46) with a standard property of

the Dirac delta function,

f(x) =
∫ b

a

δ(x− z)f(z) dz,

for a ≤ x ≤ b, shows that for Eq. (46) to hold for

any function f(x), we require (for a ≤ x ≤ b)

LG(x, z) = δ(x− z), (47)

i.e. the Green’s function must satisfy the original

ODE with the RHS set equal to a delta function.

G(x, z) may be thought of as the response of a

system to a unit impulse at x = z.

In addition to Eq. (47), we must impose two further

sets of restrictions on G(x, z). The first requires

that the general solution y(x) in Eq. (45) obeys the

boundary conditions.
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The second concerns the continuity or discontinuity

of G(x, z) and its derivative at x = z, and can be

found by integrating Eq. (47) with respect to x over

the small interval [z − ε, z + ε] and taking the limits

as ε → 0. We then obtain

lim
ε→0

n∑
m=0

∫ z+ε

z−ε

am(x)
dmG(x, z)

dxm
dx

= lim
ε→0

∫ z+ε

z−ε

δ(x− z)dx

= 1. (48)

Since dnG/dxn exists at x = z but its value there is

infinite, the (n− 1)th-order derivative must have a

finite discontinuity there, whereas all the lower-order

derivatives, dmG/dxm for m < n− 1, must be

continuous at this point. Therefore the terms

containing these derivatives cannot contribute to

the value of the integral on the LHS of Eq. (48).
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Noting that, apart from an arbitrary constant,∫
(dmG/dxm)dx = dm−1G/dxm−1, we therefore

obtain, for m = 0 to n− 1,

lim
ε→0

∫ z+ε

z−ε

am(x)
dmG(x, z)

dxm
dx

= lim
ε→0

[
am(x)

dm−1G(x, z)
dxm−1

]z+ε

z−ε

= 0. (49)

Since only the term containing dnG/dxn

contributes to the integral in Eq. (48), we find on

performing the integration that

lim
ε→0

[
an(x)

dn−1G(x, z)
dxn−1

]z+ε

z−ε

= 1. (50)

Thus, we have the further n constraints that

G(x, z) and its derivatives up to order n− 2 are

continuous at x = z, but that dn−1G/dxn−1 has a

discontinuity of 1/an(z) at x = z.
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Example

Use Green’s functions to solve

d2y

dx2
+ y = cosec x, (51)

subject to the boundary conditions

y(0) = y(π/2) = 0.

Answer

From Eq. (47), we see that the Green’s functions

G(x, z) must satisfy

d2G(x, z)
dx2

+ G(x, z) = δ(x− z). (52)

The complementary function of Eq. (52) consists of

a linear superposition of sin x and cos x, and must

consist of different superpositions on either side of

x = z since its (n− 1)th derivative is required to

have a discontinuity there. Therefore we assume the

form of the Green’s function to be

G(x, z) =





A(z) sin +B(z) cos x for x < z,

C(z) sin x + D(z) cos x for x > z.
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We now impose the relevant restrictions on G(x, z)
in order to determine the functions A(z), . . . , D(z).
The first of these is that G(x, z) should itself obey

the homogeneous boundary conditions

G(0, z) = G(π/2, z) = 0. This leads to the

conclusion that B(z) = C(z) = 0, so we now have

G(x, z) =





A(z) sin x for x < z,

D(z) cos x for x > z.

The second restriction is the continuity conditions

given in Eqs. (49), (50). That is, G(x, z) is

continuous at x = z and that dG/dx has a

discontinuity of 1/a2(z) = 1 at this point. Applying

these two constraints, we have

D(z) cos z −A(z) sin z = 0

−D(z) sin z −A(z) cos z = 1.

35



Solving these equations for A(z) and D(z), we find

A(z) = − cos z, D(z) = − sin z.

Thus we have

G(x, z) =




− cos z sin x for x < z,

− sin z cos x for x > z.

Therefore from Eq. (45), the general solution to

Eq. (51) that obeys the boundary conditions

y(0) = y(π/2) = 0 is given by

y(x) =
∫ π/2

0

G(x, z) cosec z dz

= − cos x

∫ x

0

sin z cosec z dz

− sin x

∫ π/2

x

cos z cosec z dz

= −x cos x + sin x ln(sin x),
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General ordinary differential equations

Dependent variable absent

If an ODE does not contain the dependent variable

y explicitly, but only its derivatives, then the change

of variable p = dy/dx leads to an equation of one

order lower.
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Example

Solve
d2y

dx2
+ 2

dy

dx
= 4x (53)

Answer

Using the substitution p = dy/dx, we have

dp

dx
+ 2p = 4x. (54)

The solution to Eq. (54) is therefore

p =
dy

dx
= ae−2x + 2x− 1,

where a is a constant. Thus, the general solution to

Eq. (53) is

y(x) = c1e
−2x + x2 − x + c2.
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Independent variable absent

If an ODE does not contain the independent

variable x explicitly, and if we make the substitution

p = dy/dx, we have

d2y

dx2
=

dp

dx
=

dy

dx

dp

dy
= p

dp

dy

d3y

dx3
=

d

dx

(
p
dp

dy

)
=

dy

dx

d

dy

(
p
dp

dy

)

= p2 d2p

dy2
+ p

(
dp

dy

)2

, (55)

and so on for higher-order derivatives. This leads to

an equation of one order lower.
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Example

Solve

1 + y
d2y

dx2
+

(
dy

dx

)2

= 0. (56)

Answer

Making the substitution dy/dx = p and

d2y/dx2 = p(dp/dy), we obtain the first-order ODE

1 + yp
dp

dy
+ p2 = 0,

which is separable and the solution is

(1 + p2)y2 = c1.

Using p = dy/dx, we therefore have

p =
dy

dx
= ±

√
c2
1 − y2

y2
,

which may be integrated to give the general solution

of Eq. (56),

(x + c2)2 + y2 = c2
1.
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Non-linear exact equations

Example

Solve

2y
d3y

dx3
+ 6

dy

dx

d2y

dx2
= x. (57)

We first note that the term 2y d3y/dx3 can be

obtained by differentiating 2y d2y/dx2 since

d

dx

(
2y

d2y

dx2

)
= 2y

d3y

dx3
+ 2

dy

dx

d2y

dx2
. (58)

Rewriting the LHS of Eq. (57) using (58), we are

left with 4(dy/dx)(d2y/dx2), which itself can be

written as a derivative

4
dy

dx

d2y

dx2
=

d

dx

[
2

(
dy

dx

)2
]

. (59)
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Since we can write the LHS of Eq. (57) as a sum of

simple derivatives of other functions, Eq. (57) is

exact. Integrating Eq. (57) with respect to x, and

using Eq. (58) and (59), gives

2y
d2y

dx2
+ 2

(
dy

dx

)2

=
∫

x dx =
x2

2
+ c1. (60)

Now we can repeat the process to find whether

Eq. (60) is itself exact. Considering the term on the

LHS of Eq. (60) that contains the highest-order

derivative, we find

d

dx

(
2y

dy

dx

)
= 2y

d2y

dx2
+ 2

(
dy

dx

)2

.

The expression already contain all the terms on the

LHS of Eq. (60), so we can integrate Eq. (60) to

give

2y
dy

dx
=

x3

6
+ c1x + c2.

Hence the solution is

y2 =
x4

24
+

c1x
2

2
+ c2x + c3.
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Isobaric or homogeneous equations

An nth-order isobaric equation is one in which every

term can be made dimensionally consistent upon

giving y and dy each a weight m, and x and dx

each a weight 1. In the special case where the

equation is dimensionally consistent with m = 1, the

equation is called homogeneous. If an equation is

isobaric or homogeneous, then the change in

dependent variable y = vxm (or y = vx for the

homogeneous case) followed by the change in

independent variable x = et leads to an equation in

which the new independent variable t is absent

except in the form d/dt.
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Example

Solve

x3 d2y

dx2
− (x2 + xy)

dy

dx
+ (y2 + xy) = 0. (61)

Answer

Assigning y and dy the weight m, and x and dx the

weight 1, the weights of the five terms on the LHS

of Eq. (61) are, from left to right: m + 1, m + 1,

2m, 2m, m + 1. For these weights all to be equal,

we require m = 1. Since it is homogeneous, we now

make the substitution y = vx,

x
d2v

dx2
+ (1− v)

dv

dx
= 0. (62)

Substituting x = et into Eq. (62), we obtain

d2v

dt2
− v

dv

dt
= 0, (63)

which can be integrated to give

dv

dt
=

1
2
v2 + c1. (64)
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Eq. (64) is separable, and integrates to give

1
2
t + d2 =

∫
dv

v2 + d2
1

=
1
d1

tan−1

(
v

d1

)
.

Rearranging and using x = et and y = vx, we finally

obtain the solution to Eq. (61) as

y = d1x tan(
1
2
d1 ln x + d1d2).
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Equations homogeneous in x or y alone

If the weight of x taken alone is the same in every

term in the ODE, then the substitution x = et leads

to an equation in which the new independent

variable t is absent. If the weight of y taken alone is

the same in every term then the substitution y = ev

leads to an equation in which the new dependent

variable v is absent except in the form d/dv.
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Example

Solve

x2 d2y

dx2
+ x

dy

dx
+

2
y3

= 0.

Answer

This equation is homogeneous in x alone, and on

substituting x = et we obtain

d2y

dt2
+

2
y3

= 0,

which does not contain the new independent

variable t except as d/dt. We integrate this directly

to give
dy

dt
=

√
2(c1 + 1/y2).
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This equation is separable, and we find
∫

dy√
2(c1 + 1/y2)

= t + c2.

By multiplying the numerator and denominator of

the integrand on the LHS by y, we find the solution
√

c1y2 + 1√
2c1

= t + c2.

Remembering that t = ln x, we finally obtain
√

c1y2 + 1√
2c1

= ln x + c2.
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