First-order ordinary

differential equations




Fist-degree first-order equations

First-degree first-order ODEs contain only dy/dx
equated to some function of x and y, and can be
written in either of two equivalent standard forms

dy

A A
. (z,y),

A(x,y)dz + B(x,y)dy = 0,

where F(zmy) = —A(x,y)/B(z,y), and F(x,y),
A(x,y) and B(x,y) are in general functions of both

x and y.




Separable-variable equations

A separable-variable equation is one which may be

written in the conventional form

Y = f(@)olw), (1)

where f(x) and g(y) are functions of x and y
respectively. Rearranging this equation, we obtain

/%:/f(x)daj

Finding the solution y(x) that satisfies Eq. (1) then
depends only on the ease with which the integrals in

the above equation can be evaluated.




Answer

Since the RHS of this equation can be factorized to
give (1 + y), the equation becomes separable and

we obtain

d
_y:/xdx
1 +y

Now integrating both sides, we find

2

T
ln(l—l—y):7—|—c,

and so

x? x?
14+ y=exp (7+c) = Aexp (7),

where ¢ and hence A is an arbitrary constant.




Exact equation

An exact first-degree first-order ODE is one of the
form

0A 0B
dy  Ox

A(x,y) dz+B(x,y) dy = 0 and for which

In this case, A(x,y)dx + B(x,y)dy is an exact
differential, dU (x,y) say. That is,

Adxr + Bdy = dU = a—UdCU a—Ualy,
ox oy

from which we obtain
oU
A(z,y) =

ox’

oU

B(x,y) = ay




Since 0?U/0x0y = 0%U/dy0x, we therefore require
04 _ o8
oy  Ox

If Eq. (5) holds then Eq. (2) can be written

dU(z,y) = 0, which has the solution U(x,y) = ¢,
where c is a constant and from Eq. (3), U(x,y) is

(5)

given by

Uz, y) = / Ax,y)dz+ F(y). (6

The function F(y) can be found from Eq. (4) by
differentiating Eq. (6) with respect to y and
equating to B(x,y).




Answer

Rearranging into the form Eq. (2), we have
3z +y)dx + xdy = 0,

ie. A(x,y) =3x+y and B(x,y) = x. Since
0A/0y =1 = 0B/0x, the equation is exact, and by
Eq. (6), the solution is given by

Uz, ) / (32 +y)dz + Fy) = 1

Ci.




Differentiating U(x,y) with respect to y and
equating it to B(x,y) = x, we obtain dF'/dy = 0,
which integrates to give F'(y) = co. Therefore,

letting ¢ = ¢1 — c3, the solution to the original ODE

IS

312 n
— +xy = cC.
5 Yy




Inexact equations: integrating factors

Equations that may be written in the form

0A 6 OB
oy 7 Ox
(7)

A(x,y) dz+B(x,y) dy = 0 but for which

are known as inexact equations. However the
differential Adx + B dy can always be made exact
by multiplying by an integrating factor u(x,y) that
obeys

oy  Ox (8)

For an integrating factor that is a function of both x

and y, there exists no general method for finding it.
If, however, an integrating factor exists that is a
function of either x or y alone, then Eq. (8) can be
solved to find it.




For example, if we assume that the integrating

factor is a function of x alone, = p(x), then from

0A 0B du
— =u— + B—.
s 0y are i dx
Rearranging this expression we find

d_u_l(c‘?A OB

- 8—:16) dr = f(x)dx,

u B
where we require f(x) also to be a function of x
only. The integrating factor is then given by

) = exp{ [ flarto p where f(z) =

Similarly, if u = u(y), then

1 f0B 0A

u(y) = exp {/g(y)dy} where g(y) = T 5 - 5
(10)

10



Answer

Rearranging into the form Eq. (7), we have

(42 + 3y?) dx + 2zy dy = 0,

i.e. A(x,y) = 4x + 3y? and B(z,y) = 2zy.
Therefore,

0A 0B
_— = —_— = 2
ay 6y7 8x y)

so the ODE is not exact in its present form.
However, we see that

1 /04 OB\ 2
B\oy 0zx/) =z’

a function of z alone.
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Therefore an integrating factor exists that is also a
function of x alone and, ignoring the arbitrary
constant, is given by

p(x) :exp{Z/d—x} = exp(2Ilnz) = 2°.

X

Multiplying Eq. (11) through by u(z) = 22, we
obtain

(42° + 32°y?) dx + 227y dy =
423 dx + (3z°y* dx + 22y dy) = 0.

By inspection, this integrates to give the solution

z* + 223 = ¢, where ¢ is a constant.
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Linear equations

Linear first-order ODEs are a special case of inexact
ODEs and can be written in the conventional form

dy

L+ Pla)y = Q). (12

Such equations can be made exact by multiplying
through by an appropriate integrating factor which
is always a function of = alone. An integrating
factor pu(x) must be such that

d

= ()] = p(2) Q@)

(13)

p(x) == + p(x)P(z)y

which may then be integrated directly to give

w(a)y = / (@) Q(z) da. (14)
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The required integrating factor u(x) is determined

by the first equality in Eq. (13),
d dy du dy
- f— prm— e P
T ny) = p— + Yy = e+ by,

which gives the simple relation

u(x)P(x) = p(z) = exp { / P(x) daj} .
(15)
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Example

Solve

d
i + 22y = 4x.
dx

Answer

The integrating factor is given by

() = exp{/Qazdaj} _ expa?.

Multiplying through the ODE by u(z) = exp 2?2,
and integrating, we have

yexpx? = 4/xexpx2 dr = 2expz® +c.

The solution to the ODE is therefore given by
y =2+ c exp(—x?).
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Homogeneous equations

Homogeneous equations are ODEs that may be

written in the form

o edp ().

X

where A(x,y) and B(x,y) are homogeneous
functions of the same degree. A function f(x,y) is
homogeneous of degree n if, for any A, it obeys

fAz, Ay) = A" f(z,y).

For example, if A = 2%y — zy? and B = 2° + ¢°
then we see that A and B are both homogeneous
functions of degree 3.
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The RHS of a homogeneous ODE can be written as

a function of y/x. The equation can then be solved
by making the substitution y = vx so that

dy dv

— = — = F(v).

dx vt xdaz ()

This is now a separable equation and can be
integrated to give

/F(va;v—v B d?x‘

17



d
Y + tan (g>
dx x x

Answer

Substituting y = vx, we obtain

v
v+x— = v+ tanw.
dx

Cancelling v on both sides, rearranging and
Integrating gives

d
/cotvdv:/—x:lna:—kcl.
x

But

/Cotvdv:/Cosvdv:ln(sinv)+02,

Sin v

so the solution to the ODE is y = zsin™! Az, where
A is a constant.
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Isobaric equations

An isobaric ODE is a generalization of the

homogeneous ODE and is of the form

dy  A(z,y)

dr  B(z,y)’ (18)

where the RHS is dimensionally consistent if ¥ and
dy are each given a weight m relative to x and dx,
I.e. if the substitution y = vx™ makes the equation
separable.
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Answer

Rearranging we have

2
(y2 + —> dr + 2yx dy = 0,
T

Giving y and dy the weight m and x and dx the
weight 1, the sums of the powers in each term on

the LHS are 2m + 1, 0 and 2m + 1 respectively.

These are equal if 2m +1 =20, i.e. if m = —%.

—1/2

Substituting y = va™ = vx , with the result

that dy = 2~/ 2dv — %vx_?’ﬂda:, we obtain
dx

vdv+ — =0,
x

which is separable and integrated to give
tv? + Inx = c. Replacing v by y/z, we obtain the
solution $y%z +Inz = c.
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Bernoulli’s equation

Bernoulli's equation has the form

(x)y = Q(x)y"™ wheren#0or1 (19)

This equation is non-linear but can be made linear
by substitution v = y! ™", so that

@ B y" dv

dr  \1—-n) dx
Substituting this into Eq. (19) and dividing through
by y™, we find

(1=n)P(z)v=(1-n)Q(z),

which is a linear equation, and may be solved.
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Example

Solve

Answer

4 = ¢73, then

If we let v =y!™

@_ y* dv

de 3 dx’
Substituting this into the ODE and rearranging, we

obtain

dv  3v
— = —6a°.
dx T v

Multiplying through by the following integrating

factor

d 1
exp{—S/%} = exp(—3Inz) = et

the solution is then given by

)
— = —6 .
3 T+ c

3 3

Since v = 3, we obtain y 3 = —62* + cx°.
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Miscellaneous equations

d
ﬁ = F(ax 4+ by + ¢), (20)

where a, b and c are constants, i.e. z and y appear

on the RHS in the particular combination

axr + by + ¢ and not in any other combination or by
themselves. This equation can be solved by making
the substitution v = ax + by + ¢, in which case

dv dy
—a+b—2 =q-+bF 21
dx ¢ bd:z: a+bF(v), (21)

which is separable and may be integrated directly.
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Making the substitution v = z 4+ y + 1, from
Eq. (21), we obtain

dv

2
av _ 1
dx v

which is separable and integrates to give

dv 4
= [ dr = tan v =2o+ c;.
1+ v?

So the solution to the original ODE is
tan~'(z +y + 1) = x + ¢1, where ¢; is a constant

of integration.
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Miscellaneous equations (continued)

We now consider

dy ax+by+c
de er+ fy+g’

(22)

where a, b, ¢, e, f and g are all constants. This
equation my be solved by letting x = X + a and
y =Y + 3, where o and 3 are constants found from

ac+ b8 +c=0 (23)

ea+ f6+g=0. (24)
Then Eq. (22) can be written as

dY  aX +bY
dX eX+ fY’

which is homogeneous and may be solved.
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@_ 20 — oy + 3
de 2x+4y—6

Answer

let r = X +aand y =Y + 3, where o and (3 obey
the relations

20 —50+3 = 0
20+40 -6 = 0,

which solve to give a = 3 = 1. Making these
substitutions we find

dy  2X —-5Y

dX ~ 2X +4Y

which is a homogeneous ODE and can be solved by
substituting Y = v.X to obtain

@_ 2 — Tv — 4v?
dX  X2+4v)
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This equation is separable, and using partial
fractions, we find

/ 2 + 4v p 4/ dv 2/ dv
U —_ —_—
2 — Tv — 402 3] 4v—1 3 ) v+2

dX
X?

which integrates to give

1 2
In X + gln(élv — 1)+ gln(fu +2) = ¢4,

X?(4v — 1) (v +2)? = 3c1.

SinceY =vX,z=X+1andy=Y +1, the
solution to the original ODE is given by
(4y — x — 3)(y + 22 — 3)? = co, where c3 = 3c;.
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Higher-degree first-order equations

Higher-degree first-order equations can be written as
F(z,y,dy/dz) = 0. The most general standard

form is

P+ an—1(x,y)p" " 4+ ai(z,y)p+ao(z, y) =0,
(25)

where p = dy/dz.
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Equations soluble for p

Sometime the LHS of Eq. (25) can be factorized
Into

(p—F1)p—Fa) - (p—Fn) =0, (26)
where F; = F;(x,y). We are then left with solving
the n first-degree equations p = Fj(z,y). Writing
the solutions to these first-degree equations as

Gi(x,y) = 0, the general solution to Eq. (26) is

given by the product

Gl(ZIJ,y)GQ(ZIJ,y)"'Gn(I’,y) = 0. (27)
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Example

Solve

(23 4+ 2% + x4+ 1)p? — (32° + 2z + 1)yp + 22y* = 0.
(28)

Answer

This equation may be factorized to give
(z + 1)p = y][(z* + 1)p — 2ay] = 0.

Taking each bracket in turn we have

which have the solutions y — ¢(z 4+ 1) = 0 and
y — c(x* + 1) = 0 respectively. The general solution
to Eq. (28) is then given by

ly —c(z+ 1))y — c(z® +1)] = 0.
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Equations soluble for x

Equations that can be solved for z, i.e. such that
they may be written in the form

r = F(y,p), (29)

can be reduced to first-degree equations in p by
differentiating both sides with respect to y, so that

de 1 OF OF dp
= +

dy p Oy  Opdy

This results in an equation of the form G(y,p) = 0,
which can be used together with Eq. (29) to
eliminate p and give the general solution.
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Example
Solve

6y%p? + 3zp — y = 0. (30)
Answer

This equation can be solved for x explicitly to give
3z = y/p — 6y*p. Differentiating both sides with
respect to y, we find

which factorizes to give

(1 + 6yp?) (Zp -+ yj—i) = 0. (31)

Setting the factor containing dp/dy equal to zero
gives a first-degree first-order equation in p, which
may be solved to give py? = c. Substituting for p in
Eq. (30) then yields the general solution of Eq. (30):

y° = 3cx + 6¢%. (32)
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If we now consider the first factor in Eq. (31), we
find 6p?y = —1 as a possible solution. Substituting
for p in Eq. (30) we find the singular solution

8y° + 32° = 0.

Note that the singular solution contains no arbitrary
constants and cannot be found from the general
solution (32) by any choice of the constant c.
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Equations soluble for y

Equations that can be solved for y, i.e. such that
they may be written in the form

y = F(z,p), (33)

can be reduced to first-degree first-order equations
in p by differentiating both sides with respect to v,

so that
dy _
dr

OF OF dp
" Oz i Op dx
This results in an equation of the form G(x,y) = 0,
which can be used together with Eq. (33) to
eliminate p and give the general solution.

p
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Example

Solve
rp® + 2zp —y = 0. (34)

Answer

This equation can be solved for y explicitly to give
y = xp? + 2xp. Differentiating both sides with
respect to x, we find

dp

2
7 T 4D

d
—:p:2xp—p—|—p2—|—2x
dx

which after factorizing gives

dp
1 20— | = 0.
(p+ )(p—l— a:dx) 0
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To obtain the general solution of Eq. (34), we first
consider the factor containing dp/dx. This
first-degree first-order equation in p has the solution
a:p2 = ¢, which we then use to eliminate p from

Eq. (34). We therefore find that the general solution
to Eq. (34) is

(y — ¢)? = 4ecx. (36)

If we now consider the first factor in Eq. (35), we
find this has the simple solution p = —1.
Substituting this into Eq. (34) then gives

z+y=0,

which is a singular solution to Eq. (34).
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Clairaut’s equation

The Clairaut’'s equation has the form
y = px + F(p), (37)

and is therefore a special case of equations soluble
for y, Eq. (33).

Differentiating Eq. (37) with respect to z, we find

dp

p+xdx

Considering first the factor containing dp/dx, we
find

dp d?y

Since p = dy/dx = c1, if we substitute Eq. (39) into
Eq. (37), we find c1z + ¢ = crx + F(c1).
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Therefore the constant ¢y is given by F'(c1), and the
general solution to Eq. (37)

y=cx+ F(c), (40)

i.e. the general solution to Clairaut’s equation can
be obtained by replacing p in the ODE by the
arbitrary constant ¢;. Now considering the second
factor in Eq. (38), also have

dF
— =0 41

which has the form G(x,p) = 0. This relation may

be used to eliminate p from Eq. (37) to give a

singular solution.
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y = px + p°. (42)

Answer

From Eq. (40), the general solution is y = cx + c°.
But from Eq. (41), we also have

2p 4+ x =0 = p = —x/2. Substituting this into
Eq. (42) we find the singular solution z* + 4y = 0.
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