
First-order ordinary

differential equations
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Fist-degree first-order equations

First-degree first-order ODEs contain only dy/dx

equated to some function of x and y, and can be

written in either of two equivalent standard forms

dy

dx
= F (x, y),

or

A(x, y) dx + B(x, y) dy = 0,

where F (xmy) = −A(x, y)/B(x, y), and F (x, y),
A(x, y) and B(x, y) are in general functions of both

x and y.
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Separable-variable equations

A separable-variable equation is one which may be

written in the conventional form

dy

dx
= f(x)g(y), (1)

where f(x) and g(y) are functions of x and y

respectively. Rearranging this equation, we obtain
∫

dy

g(y)
=

∫
f(x) dx.

Finding the solution y(x) that satisfies Eq. (1) then

depends only on the ease with which the integrals in

the above equation can be evaluated.
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Example

Solve
dy

dx
= x + xy.

Answer

Since the RHS of this equation can be factorized to

give x(1 + y), the equation becomes separable and

we obtain ∫
dy

1 + y
=

∫
x dx

Now integrating both sides, we find

ln(1 + y) =
x2

2
+ c,

and so

1 + y = exp
(

x2

2
+ c

)
= A exp

(
x2

2

)
,

where c and hence A is an arbitrary constant.
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Exact equation

An exact first-degree first-order ODE is one of the

form

A(x, y) dx+B(x, y) dy = 0 and for which
∂A

∂y
=

∂B

∂x
.

(2)
In this case, A(x, y) dx + B(x, y) dy is an exact

differential, dU(x, y) say. That is,

Adx + B dy = dU =
∂U

∂x
dx +

∂U

∂y
dy,

from which we obtain

A(x, y) =
∂U

∂x
, (3)

B(x, y) =
∂U

∂y
. (4)

5



Since ∂2U/∂x∂y = ∂2U/∂y∂x, we therefore require

∂A

∂y
=

∂B

∂x
. (5)

If Eq. (5) holds then Eq. (2) can be written

dU(x, y) = 0, which has the solution U(x, y) = c,

where c is a constant and from Eq. (3), U(x, y) is

given by

U(x, y) =
∫

A(x, y) dx + F (y). (6)

The function F (y) can be found from Eq. (4) by

differentiating Eq. (6) with respect to y and

equating to B(x, y).
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Example

Solve

x
dy

dx
+ 3x + y = 0.

Answer

Rearranging into the form Eq. (2), we have

(3x + y) dx + x dy = 0,

i.e. A(x, y) = 3x + y and B(x, y) = x. Since

∂A/∂y = 1 = ∂B/∂x, the equation is exact, and by

Eq. (6), the solution is given by

U(x, y) =
∫

(3x + y) dx + F (y) = c1

⇒ 3x2

2
+ yx + F (y) = c1.
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Differentiating U(x, y) with respect to y and

equating it to B(x, y) = x, we obtain dF/dy = 0,

which integrates to give F (y) = c2. Therefore,

letting c = c1 − c2, the solution to the original ODE

is
3x2

2
+ xy = c.
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Inexact equations: integrating factors

Equations that may be written in the form

A(x, y) dx+B(x, y) dy = 0 but for which
∂A

∂y
6= ∂B

∂x
(7)

are known as inexact equations. However the

differential Adx + B dy can always be made exact

by multiplying by an integrating factor µ(x, y) that

obeys
∂(µA)

∂y
=

∂(µB)
∂x

. (8)

For an integrating factor that is a function of both x

and y, there exists no general method for finding it.

If, however, an integrating factor exists that is a

function of either x or y alone, then Eq. (8) can be

solved to find it.
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For example, if we assume that the integrating

factor is a function of x alone, µ = µ(x), then from

Eq. (8),

µ
∂A

∂y
= µ

∂B

∂x
+ B

dµ

dx
.

Rearranging this expression we find

dµ

µ
=

1
B

(
∂A

∂y
− ∂B

∂x

)
dx = f(x) dx,

where we require f(x) also to be a function of x

only. The integrating factor is then given by

µ(x) = exp
{∫

f(x)dx

}
where f(x) =

1
B

(
∂A

∂y
− ∂B

∂x

)
.

(9)
Similarly, if µ = µ(y), then

µ(y) = exp
{∫

g(y)dy

}
where g(y) =

1
A

(
∂B

∂x
− ∂A

∂y

)
.

(10)
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Eample

Solve
dy

dx
= −2

y
− 3y

2x
.

Answer

Rearranging into the form Eq. (7), we have

(4x + 3y2) dx + 2xy dy = 0, (11)

i.e. A(x, y) = 4x + 3y2 and B(x, y) = 2xy.

Therefore,

∂A

∂y
= 6y,

∂B

∂x
= 2y,

so the ODE is not exact in its present form.

However, we see that

1
B

(
∂A

∂y
− ∂B

∂x

)
=

2
x

,

a function of x alone.
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Therefore an integrating factor exists that is also a

function of x alone and, ignoring the arbitrary

constant, is given by

µ(x) = exp
{

2
∫

dx

x

}
= exp(2 ln x) = x2.

Multiplying Eq. (11) through by µ(x) = x2, we

obtain

(4x3 + 3x2y2) dx + 2x3y dy =

4x3 dx + (3x2y2 dx + 2x3y dy) = 0.

By inspection, this integrates to give the solution

x4 + y2x3 = c, where c is a constant.
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Linear equations

Linear first-order ODEs are a special case of inexact

ODEs and can be written in the conventional form

dy

dx
+ P (x)y = Q(x). (12)

Such equations can be made exact by multiplying

through by an appropriate integrating factor which

is always a function of x alone. An integrating

factor µ(x) must be such that

µ(x)
dy

dx
+ µ(x)P (x)y =

d

dx
[µ(x)y] = µ(x)Q(x),

(13)
which may then be integrated directly to give

µ(x)y =
∫

µ(x)Q(x) dx. (14)
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The required integrating factor µ(x) is determined

by the first equality in Eq. (13),

d

dx
(µy) = µ

dy

dx
+

dµ

dx
y = µ

dy

dx
+ µPy,

which gives the simple relation

dµ

dx
= µ(x)P (x) ⇒ µ(x) = exp

{∫
P (x) dx

}
.

(15)
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Example

Solve
dy

dx
+ 2xy = 4x.

Answer

The integrating factor is given by

µ(x) = exp
{∫

2x dx

}
= exp x2.

Multiplying through the ODE by µ(x) = exp x2,

and integrating, we have

y expx2 = 4
∫

x expx2 dx = 2 exp x2 + c.

The solution to the ODE is therefore given by

y = 2 + c exp(−x2).
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Homogeneous equations

Homogeneous equations are ODEs that may be

written in the form

dy

dx
=

A(x, y)
B(x, y)

= F
(y

x

)
, (16)

where A(x, y) and B(x, y) are homogeneous

functions of the same degree. A function f(x, y) is

homogeneous of degree n if, for any λ, it obeys

f(λx, λy) = λnf(x, y).

For example, if A = x2y − xy2 and B = x3 + y3

then we see that A and B are both homogeneous

functions of degree 3.
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The RHS of a homogeneous ODE can be written as

a function of y/x. The equation can then be solved

by making the substitution y = vx so that

dy

dx
= v + x

dv

dx
= F (v).

This is now a separable equation and can be

integrated to give
∫

dv

F (v)− v
=

∫
dx

x
. (17)
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Eample

Solve
dy

dx
=

y

x
+ tan

(y

x

)
.

Answer

Substituting y = vx, we obtain

v + x
dv

dx
= v + tan v.

Cancelling v on both sides, rearranging and

integrating gives
∫

cot v dv =
∫

dx

x
= ln x + c1.

But
∫

cot v dv =
∫

cos v

sin v
dv = ln(sin v) + c2,

so the solution to the ODE is y = x sin−1 Ax, where

A is a constant.
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Isobaric equations

An isobaric ODE is a generalization of the

homogeneous ODE and is of the form

dy

dx
=

A(x, y)
B(x, y)

, (18)

where the RHS is dimensionally consistent if y and

dy are each given a weight m relative to x and dx,

i.e. if the substitution y = vxm makes the equation

separable.
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Example

Solve
dy

dx
=
−1
2yx

(
y2 +

2
x

)
.

Answer

Rearranging we have
(

y2 +
2
x

)
dx + 2yx dy = 0,

Giving y and dy the weight m and x and dx the

weight 1, the sums of the powers in each term on

the LHS are 2m + 1, 0 and 2m + 1 respectively.

These are equal if 2m + 1 = 0, i.e. if m = − 1
2 .

Substituting y = vxm = vx−1/2, with the result

that dy = x−1/2dv − 1
2vx−3/2dx, we obtain

v dv +
dx

x
= 0,

which is separable and integrated to give
1
2v2 + ln x = c. Replacing v by y

√
x, we obtain the

solution 1
2y2x + ln x = c.
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Bernoulli’s equation

Bernoulli’s equation has the form

dy

dx
+ P (x)y = Q(x)yn where n 6= 0 or 1 (19)

This equation is non-linear but can be made linear

by substitution v = y1−n, so that

dy

dx
=

(
yn

1− n

)
dv

dx
.

Substituting this into Eq. (19) and dividing through

by yn, we find

dv

dx
+ (1− n)P (x)v = (1− n)Q(x),

which is a linear equation, and may be solved.
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Example

Solve
dy

dx
+

y

x
= 2x3y4.

Answer

If we let v = y1−4 = y−3, then

dy

dx
= −y4

3
dv

dx
.

Substituting this into the ODE and rearranging, we

obtain
dv

dx
− 3v

x
= −6x3.

Multiplying through by the following integrating

factor

exp
{
−3

∫
dx

x

}
= exp(−3 ln x) =

1
x3

,

the solution is then given by

v

x3
= −6x + c.

Since v = y−3, we obtain y−3 = −6x4 + cx3.
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Miscellaneous equations

dy

dx
= F (ax + by + c), (20)

where a, b and c are constants, i.e. x and y appear

on the RHS in the particular combination

ax + by + c and not in any other combination or by

themselves. This equation can be solved by making

the substitution v = ax + by + c, in which case

dv

dx
= a + b

dy

dx
= a + bF (v), (21)

which is separable and may be integrated directly.
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Example

Solve
dy

dx
= (x + y + 1)2.

Answer

Making the substitution v = x + y + 1, from

Eq. (21), we obtain

dv

dx
= v2 + 1,

which is separable and integrates to give
∫

dv

1 + v2
=

∫
dx =⇒ tan−1 v = x + c1.

So the solution to the original ODE is

tan−1(x + y + 1) = x + c1, where c1 is a constant

of integration.
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Miscellaneous equations (continued)

We now consider

dy

dx
=

ax + by + c

ex + fy + g
, (22)

where a, b, c, e, f and g are all constants. This

equation my be solved by letting x = X + α and

y = Y + β, where α and β are constants found from

aα + bβ + c = 0 (23)

eα + fβ + g = 0. (24)

Then Eq. (22) can be written as

dY

dX
=

aX + bY

eX + fY
,

which is homogeneous and may be solved.
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Example

Solve
dy

dx
=

2x− 5y + 3
2x + 4y − 6

.

Answer

Let x = X + α and y = Y + β, where α and β obey

the relations

2α− 5β + 3 = 0

2α + 4β − 6 = 0,

which solve to give α = β = 1. Making these

substitutions we find

dY

dX
=

2X − 5Y

2X + 4Y
,

which is a homogeneous ODE and can be solved by

substituting Y = vX to obtain

dv

dX
=

2− 7v − 4v2

X(2 + 4v)
.
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This equation is separable, and using partial

fractions, we find
∫

2 + 4v

2− 7v − 4v2
dv = −4

3

∫
dv

4v − 1
− 2

3

∫
dv

v + 2

=
∫

dX

X
,

which integrates to give

ln X +
1
3

ln(4v − 1) +
2
3

ln(v + 2) = c1,

or

X3(4v − 1)(v + 2)2 = 3c1.

Since Y = vX, x = X + 1 and y = Y + 1, the

solution to the original ODE is given by

(4y − x− 3)(y + 2x− 3)2 = c2, where c2 = 3c1.
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Higher-degree first-order equations

Higher-degree first-order equations can be written as

F (x, y, dy/dx) = 0. The most general standard

form is

pn +an−1(x, y)pn−2 + · · ·+a1(x, y)p+a0(x, y) = 0,

(25)
where p = dy/dx.
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Equations soluble for p

Sometime the LHS of Eq. (25) can be factorized

into

(p− F1)(p− F2) · · · (p− Fn) = 0, (26)

where Fi = Fi(x, y). We are then left with solving

the n first-degree equations p = Fi(x, y). Writing

the solutions to these first-degree equations as

Gi(x, y) = 0, the general solution to Eq. (26) is

given by the product

G1(x, y)G2(x, y) · · ·Gn(x, y) = 0. (27)
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Example

Solve

(x3 + x2 + x + 1)p2 − (3x2 + 2x + 1)yp + 2xy2 = 0.

(28)

Answer

This equation may be factorized to give

[(x + 1)p− y][(x2 + 1)p− 2xy] = 0.

Taking each bracket in turn we have

(x + 1)
dy

dx
− y = 0,

(x2 + 1)
dy

dx
− 2xy = 0,

which have the solutions y − c(x + 1) = 0 and

y − c(x2 + 1) = 0 respectively. The general solution

to Eq. (28) is then given by

[y − c(x + 1)][y − c(x2 + 1)] = 0.
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Equations soluble for x

Equations that can be solved for x, i.e. such that

they may be written in the form

x = F (y, p), (29)

can be reduced to first-degree equations in p by

differentiating both sides with respect to y, so that

dx

dy
=

1
p

=
∂F

∂y
+

∂F

∂p

dp

dy
.

This results in an equation of the form G(y, p) = 0,

which can be used together with Eq. (29) to

eliminate p and give the general solution.
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Example

Solve

6y2p2 + 3xp− y = 0. (30)

Answer

This equation can be solved for x explicitly to give

3x = y/p− 6y2p. Differentiating both sides with

respect to y, we find

3
dx

dy
=

3
p

=
1
p
− y

p2

dp

dy
− 6y2 dp

dy
− 12yp,

which factorizes to give

(1 + 6yp2)
(

2p + y
dp

dy

)
= 0. (31)

Setting the factor containing dp/dy equal to zero

gives a first-degree first-order equation in p, which

may be solved to give py2 = c. Substituting for p in

Eq. (30) then yields the general solution of Eq. (30):

y3 = 3cx + 6c2. (32)
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If we now consider the first factor in Eq. (31), we

find 6p2y = −1 as a possible solution. Substituting

for p in Eq. (30) we find the singular solution

8y3 + 3x2 = 0.

Note that the singular solution contains no arbitrary

constants and cannot be found from the general

solution (32) by any choice of the constant c.
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Equations soluble for y

Equations that can be solved for y, i.e. such that

they may be written in the form

y = F (x, p), (33)

can be reduced to first-degree first-order equations

in p by differentiating both sides with respect to y,

so that
dy

dx
= p =

∂F

∂x
+

∂F

∂p

dp

dx
.

This results in an equation of the form G(x, y) = 0,

which can be used together with Eq. (33) to

eliminate p and give the general solution.
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Example

Solve

xp2 + 2xp− y = 0. (34)

Answer

This equation can be solved for y explicitly to give

y = xp2 + 2xp. Differentiating both sides with

respect to x, we find

dy

dx
= p = 2xp

dp

dx
+ p2 + 2x

dp

dx
+ 2p,

which after factorizing gives

(p + 1)
(

p + 2x
dp

dx

)
= 0. (35)
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To obtain the general solution of Eq. (34), we first

consider the factor containing dp/dx. This

first-degree first-order equation in p has the solution

xp2 = c, which we then use to eliminate p from

Eq. (34). We therefore find that the general solution

to Eq. (34) is

(y − c)2 = 4cx. (36)

If we now consider the first factor in Eq. (35), we

find this has the simple solution p = −1.

Substituting this into Eq. (34) then gives

x + y = 0,

which is a singular solution to Eq. (34).
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Clairaut’s equation

The Clairaut’s equation has the form

y = px + F (p), (37)

and is therefore a special case of equations soluble

for y, Eq. (33).

Differentiating Eq. (37) with respect to x, we find

dy

dx
= p = p + x

dp

dx
+

dF

dp

dp

dx

⇒ dp

dx

(
dF

dp
+ x

)
= 0. (38)

Considering first the factor containing dp/dx, we

find
dp

dx
=

d2y

dx2
= 0 ⇒ y = c1x + c2. (39)

Since p = dy/dx = c1, if we substitute Eq. (39) into

Eq. (37), we find c1x + c2 = c1x + F (c1).
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Therefore the constant c2 is given by F (c1), and the

general solution to Eq. (37)

y = c1x + F (c1), (40)

i.e. the general solution to Clairaut’s equation can

be obtained by replacing p in the ODE by the

arbitrary constant c1. Now considering the second

factor in Eq. (38), also have

dF

dp
+ x = 0, (41)

which has the form G(x, p) = 0. This relation may

be used to eliminate p from Eq. (37) to give a

singular solution.
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Example

Solve

y = px + p2. (42)

Answer

From Eq. (40), the general solution is y = cx + c2.

But from Eq. (41), we also have

2p + x = 0 ⇒ p = −x/2. Substituting this into

Eq. (42) we find the singular solution x2 + 4y = 0.
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