
Physics 125b – Problem Set 9 – Due Jan 22, 2008

Version 2 – Jan 19, 2008

This problem set focuses on the WKB and variational approximation techniques – Shankar Chapter
16 and Lecture Notes 11.
Version 2: Important typos and algebraic errors in Problem 1, minor (obvious) typos in Problem
5 fixed. Add comment in Problem 2 that you may assume orbital angular momentum vanishes.

Many basic problems in QM can be found in textbooks – there are only so many solvable elementary
problems out there. Please refrain from using solutions from other textbooks. Obviously, you will
learn more and develop better intuition for QM by solving the problems yourself. We are happy to
provide hints to get you through the tricky parts of a problem, but you must learn to set up and
solve these problems from scratch by yourself.

1. Let’s consider the WKB approximation for tunneling through a potential barrier. We of
course do not consider a step potential barrier, but rather one that has smooth enough edges
to ensure the |dλ/dx| � 1 requirement is satisfied everywhere except possibly for transition
regions at the two edges of the barrier. See the figure below.

Potential step for WKB tunneling problem.

We will derive the tunneling probability. We assume E < max[V (x)] so that there are classical
turning points x1 and x2 and a region II that is not classically accessible.

(a) Assume a particle incident from the left side so that the solutions in regions I (incident
+ reflected waves), II (tunneling region), and III (transmitted wave) are
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where

p(x) =
√

2m (E − V (x)) κ(x) =
√

2m (V (x)− E) (4)

where r, α, β, and t are coefficients to be determined. (We neglect overall normalization,
hence there is no coefficient to be determined for the first term in ψI .) We make a
linear approximation to the potential in the transition regions near x1 and x2, so we
know that the full solution to the Schrödinger Equation in these regions will be Airy
functions. (Why does this explain our inclusion of π/4 in the arguments of the complex
exponentials outside the transition regions?) Using the asymptotic forms of the Airy
functions to connect across the transition regions, show that the matching conditions
between ψI and ψII and between ψII and ψIII are

i(1− r) = −2β 1 + r = α i t = 2α ea t = β e−a (5)
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1
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Why are the forms we have assumed for the incident, reflected, and transmitted waves
correct (i.e., show they have the correct sign of the dependence of the phase on position)?

(b) Calculate the transmission probability based on the above. Explain why you may make
an approximation that reduces the transmission probability to

T = e−2 a (7)

2. A primary mode of decay for radioactive nuclei is through the process of α emission. A model
for this process envisions the α particle bound to the nuclear by a square well potential in
radius. Outside the well, the α particle is repelled from the residual nucleus by the potential
barrier

V (r) =
2(Z − 2)e2

r
≡ A

r
(8)

The original radioactive nucleus has charge Ze while the α particle has charge 2e. See the
figure below for a sketch of the full potential.

Nuclear potential for α decay.
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(a) Use the WKB approximation as derived in Problem 1 to calculate the transmission
probability T of the nuclear barrier for α decay in terms of the velocity v =

√
2E/m

and the dimensionless ratio cosW ≡
√
r0/r1. You may assume the orbital angular

momentum vanishes so that the problem may be treated as one-dimensional in r and
Problem 1 applies directly. What form does T assume in the limit r0 → 0?

(b) Assuming that the α particle “bounces” freely between the walls of the well with speed
∼ 109 cm/s and that the radius of the nucleus is ∼ 10−12 cm, one obtains that the
α particle strikes the barrier at the rate ∼ 1021/s. It follows that the probability of
tunneling through the barrier per second is P = 1021 T , where T is the transmission
probability calculated above, and that the mean lifetime of the nucleus is τ = 1/P =
1021/T sec. Use your answer to part (a) for T and the following expression for the
nuclear radius

r0 = 2 × 10−13 Z1/3 cm (9)

to estimate the mean lifetime for uranium α decay. Look up the true value for compar-
ison.

3. Do a web search to find an application of the WKB method (not necessarily related to
quantum mechanics) and describe it, briefly. It must be beyond a simple textbook-level
application.

4. Consider the anharmonic oscillator,

V (x) =
1
2
k x2 + αx4 (10)

Use the variational technique to estimate the ground state and first excited state energies.
You will have to choose appropriate trial wavefunctions (Hint: look at the standard SHO
wavefunctions.)

5. In the lecture notes, we considered the use of the variational technique to obtain an upper
limit on the ground-state energy. We will now prove a more powerful version of this method,
called the Hylleraas-Undheim Theorem.

Consider a set of n orthonormalized kets, {|χ(n)
i 〉}. One may construct a trial state from

them

|ψ 〉 =
n−1∑
i=0

ci|χ(n)
i 〉 (11)

where we require the ci to be real for simplicity. Consider the standard energy functional
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〈ψ |H|ψ 〉
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Let us minimize E[ψ] with respect to the n undetermined coefficients {ci}, ∂E
∂ci

= 0 for every
ci. We obtain the set of n equations

n−1∑
j=0

(
〈χ(n)

i |H|χ(n)
j 〉 − E δij

)
cj = 0 i = 0, 1, . . . , n− 1 (13)
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where the E are undetermined. This is just the eigenvalue-eigenvector equation for H in the
subspace spanned by the {|χ(n)

i 〉}, (
H(n) − E I(n)

)
~c = 0 (14)

where H(n) is the matrix representation of the Hamiltonian H in the vector subspace spanned
by the {χ(n)

i } and I(n) is the identity matrix in that subspace. Nontrivial solutions ~c are
obtained if the determinant of the matrix operator vanishes,

|H(n) − E I(n)| = 0 (15)

There will be in general n solutions to this equation, {E(n)
i }, i = 0, · · · , n− 1, where the (n)

superscript indicates that the Ei are estimates based on a subspace of dimension n. (We as-
sume we have sorted them in increasing order, E(n)

0 ≤ E
(n)
1 ≤ · · · ≤ E

(n)
n−1.) The corresponding

eigenvectors {~c (n)
i } yield n wavefunctions |ψ(n)

i 〉 with |ψ(n)
i 〉 =

∑n−1
j=0 (~c (n)

i )j |χj 〉.
The Hylleraas-Undheim theorem states two things:

(a) If one compares the estimates obtained with n trial wavefunctions and the estimate
obtained by adding one additional orthonormalized trial wavefunction χn+1, one finds
that the new energy estimates are interleaved with the old ones,

E
(n+1
0 ≤ E

(n)
0 ≤ E

(n+1)
1 ≤ E

(n)
1 · · · ≤ E

(n+1)
n−1 ≤ E

(n)
n−1 ≤ E(n+1)

n (16)

(b) The eigenvalues {E(n)
i } are upper limits to the corresponding excited states. That is, if

Ei is the true energy of the ith excited state (with i = 0 being the ground state), then
Ei ≤ E

(n)
i .

The result is a successive approximation scheme in which one can obtain a first upper-bound
estimate for the nth excited state energy by solving the eigenvalue-eigenvector problem for
H in a subspace spanned by n orthonormalized states, and in which the estimate improves
monotonically downward toward the true nth excited state energy as one expands the subspace
in which the eigenvalue-eigenvector problem for H is solved. One can see why this would be
useful: the estimates for the nth excited state energy march monotonically downward, so one
can get a reasonable estimate of how good one’s approximation is by monitoring the change
in the estimate as the subspace size is expanded.

This is a far more interesting constraint than the one we obtained in class for a first excited
state trial wavefunction ψ1 that is orthonormal to the ground state wavefunction ψ0, which
was E[ψ1] ≥ E1 − δ0(E1 − E0) with δ0 = 1 − |〈ψ0 |φ0 〉|2 where φ0 is the true ground-state
wavefunction. There, E[ψ1] was simply not necessarily an upper bound to E1.

So, after all that exposition, we would like you to prove two things:

(a) Prove the interleaving aspect; i.e., that when the subspace is expanded by one dimension
from n to n+ 1, the new estimates lie between the old estimates. Do this as follows:

i. Use the {|ψ(n)
i 〉} that result from diagonalization of the n-dimensional subspace as

the first n basis functions for the n + 1 subspace, rather than using the {|χ(n)
i 〉}.

Explain why this change allows no less general a choice of the (n + 1)st state that
will be added. Write the matrix H(n+1) −E I(n+1); the choice of basis will result in
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a relatively simple form, which you should write out in terms of the {E(n)
i } and the

n unknown matrix elements of H between the newly added state |χ(n+1)
n 〉 and the

{|ψ(n)
i 〉}.

ii. Denote the determinant of H(n+1)−E I(n+1) by f (n+1)(E); it will be an order n+1
polynomial in E. One may evaluate this polynomial at the {E(n)

i } obtained from the
n-dimensional subspace. Show that f (n+1)(E(n)

i ) alternates sign between successive
values of i, obtain the E → +∞ and E → −∞ limiting behavior, and use these
results to show that the zeroes of f (n+1)(E) – which will of course be the {E(n+1)

i }
– are interleaved between the {E(n)

i }.

(b) Assuming the interleaving aspect is true, show that E(n)
i ≥ Ei; i.e., that the estimate

for Ei is always an upper limit to Ei. Hint: what is the limit on how much the subspace
can be expanded?
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