
Physics 125a – Problem Set 7 – Due Nov 27, 2007

Version 4 – Nov 24, 2007

Note the delayed due date!

This problem set focuses on uncertainty relations and on multiparticle systems (Shankar 9 and
10.1-10.2, Lecture Notes 7 and 8.1-8.3).

Many basic problems in QM can be found in textbooks – there are only so many solvable elementary
problems out there. Please refrain from using solutions from other textbooks. Obviously, you will
learn more and develop better intuition for QM by solving the problems yourself. We are happy to
provide hints to get you through the tricky parts of a problem, but you must learn to set up and
solve these problems from scratch by yourself.

v. 2: A bit of clarification on how stringent your uncertainty bound must be in Problem 1. Rewrite
Problem 5 as a counterexample since it turns out to be false.
v. 3: Indicate in Problem 5 that you may not use the trivial counterexample a = b.
v. 4: It turns out Problem 5 was correct, and that it’s your instructor, not the textbooks, who should
be treated with skepticism. See corrected problem. Where did I go wrong? Nothing particularly
subtle, I just jumped through a step I thought was obvious, obtaining a nonzero quantity where I
should have obtained a vanishing quantity. Be careful and you’ll have no problem.

1. For a single particle subject to the generic one-dimensional Hamiltonian

H =
P 2

2m
+ V (X) (1)

obtain uncertainty relations for the following products:

(a)
√

(∆X)2 (∆E)2

(b)
√

(∆P )2 (∆E)2

(c)
√

(∆X)2 (∆T )2

(d)
√

(∆P )2 (∆T )2

where the particle’s kinetic energy expectation value is T and total energy expectation value
is E. Don’t try to evaluate the anticommutator term given in the generic uncertainty relation
(Equation 7.6 of the lecture notes); use the less stringent bound given by neglecting the
anticommutator term, like what we did to obtain Equation 7.8 of the lecture notes. (Hint:
what operators’ expectation values are being taken to give T and E?)

2. Ignore the fact that the hydrogen atom is a three-dimensional system and pretend that

H =
P 2

2m
− e2

(R2)1/2
with P 2 = P 2

X + P 2
Y + P 2

Z , R2 = X2 + Y 2 + Z2 (2)
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corresponds to a one-dimensional problem. Assuming√
(∆P )2 (∆R)2 ≥ ~

2
(3)

estimate the ground-state energy.

3. The Baker-Hausdorf Lemma. Show that, for operators A and B, with [A, [A,B]] = 0 and
[B, [A,B]] = 0,

eA eB = eA+B e
1
2
[A,B] (4)

Hint: First show that [eη A, B] = η eη A[A,B] where η is a number, not an operator. Then
estalblish that the derivative of

g(η) = eη A eη B e−η(A+B) (5)

is

dg

dη
= η [A,B] g(η) (6)

and integrate.

This relation is used in quantum statistical mechanics in the form

eβ(A+B) ≈ eβ A eβ B e−
1
2

β2 [A,B] (7)

for β � 1, where β plays the role of inverse temperature and A+B is the Hamiltonian.

4. Quantize the two-dimensional simple harmonic oscillator, for which the classical Hamiltonian
is

H =
p2

x + p2
y

2m
+

1
2
mω2

xx
2 +

1
2
mω2

yy
2 (8)

(a) Show that the allowed energies are

E =
(
nx +

1
2

)
~ωx +

(
ny +

1
2

)
~ωy nx, ny = 0, 1, 2, . . . (9)

(b) Write down the corresponding position-basis representations (wavefunctions) in terms of
single oscillator wavefunctions. Verify that they are eigenstates of the two-dimensional
parity operator, Π, which performs the transformation (x→ −x, y → −y), and that the
eigenvalues depend only on nx + ny.

(c) Consider next the isotropic oscillator (ωx = ωy). Write explicit, normalized eigenfunc-
tions of the first three states (that is, for the cases n = 0 and n = 1). Reexpress your
results in terms of polar coordinates ρ and φ. For arbitary n, show that the degeneracy
of a level with E = (n+ 1) ~ω is n+ 1.
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5. Consider two identical particles in a one-dimensional box extending from −L/2 to L/2. Con-
sider some distinguishable particle state |ψ 〉 = |ψa 〉(1) ⊗ |ψb 〉(2) where |ψa 〉 and |ψb 〉 are
single-particle eigenstates with mode indices a and b. Let |ψ 〉+ and |ψ 〉− denote the sym-
metrized and antisymmetrized version of this state. Calculate the expectation value for the
square of the interparticle displacement

(
2 δX(1)⊗(2)

)2
for the two states |ψ 〉+ and |ψ 〉−,

where δX(1)⊗(2) was defined in the lecture notes and you should write your expressions in
terms of the single-particle matrix elements such as

Xmn = 〈ψm |X|ψn 〉 Ymn = 〈ψm |X2|ψn 〉 (10)

where m and n may take on the values a or b (i.e., mn = aa, ab, ba, and bb are allowed).
(Note that Ymn 6= (Xmn)2!) Show that

+〈ψ |
(
δX(1)⊗(2)

)2
|ψ 〉+ ≤ −〈ψ |

(
δX(1)⊗(2)

)2
|ψ 〉− (11)

thus establishing that (in a statistical sense) particles in a symmetric state attract one another
while particles in an antisymmetric state repel one another. Such attractions and repulsions
are termed exchange phenomena.
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