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Question 1

Show the execution of the Edmonds-Karp algorithm on the
following flow network.
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Solution 1
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Solution 1
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Solution 1
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Solution 1
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Max flow value = 23

Cut capacity = 23
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Question 2

Extend the flow properties and definitions to the multiple-source,
multiple-sink problem. Show that any flow in a multiple-source,
multiple-sink flow network corresponds to a flow of identical value
in the single-source, single-sink network obtained by adding a
supersource and a supersink, and vice versa.
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Solution 2

Suppose that there are multiple sources s1, s2, . . . , sm and multiple
sinks t1, t2, . . . , tn of the flow network G .

The definition becomes to find a flow f with maximum value

|f | =
m∑

i=1

∑
v

f (si , v) =
n∑

i=1

∑
v

f (v , ti).

The flow conservation property becomes

∀v ∈ V − {s1, s2, . . . , sm, t1, t2, . . . , tn},
∑

e out of v
f (e) =

∑
e into v

f (e)
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Solution 2

Obtain a flow network G ′ from G by adding a supersource s with
edges (s, si) for 1 ≤ i ≤ m and a supersink t with edges (ti , t),
where the capacity of these edges are set to infinity. Then, any flow
in G corresponds to a flow of identical value in G ′, and vice versa.
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Question 3

The edge connectivity of an undirected graph is the minimum
number k of edges that must be removed to disconnect the graph.
For example, the edge connectivity of a tree is 1, and the edge
connectivity of a cyclic chain of vertices is 2. Show how to
determine the edge connectivity of an undirected graph
G = (V , E ) by running a maximum-flow algorithm on at most |V |
flow networks, each having O(V ) vertices and O(E ) edges.
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Solution 3

Step 1: Choose a vertex s ∈ V arbitrarily.
Step 2: For each vertex v ∈ V − {s}, build a flow network Gsv from G

as follows,
2.1: Each undirected edge (x , y) ∈ E becomes two directed edges

(x , y) and (y , x) (auxiliary vertex can be added to avoid
antiparallel edges)

2.2: Remove the incoming edge of s and outgoing edge of v .
2.3: Each directed edge has weight 1.

Step 3: For each flow network Gsv , obtain the maximum flow fsv with
source s and sink v .

Step 4: The edge connectivity k = minv∈V−{s} |fsv |.
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Solution 3

Correctness: For any cut C = {S, V − S}, if the edges in G that
cross C are removed, then the graph is disconnected. Thus, the
edge connectivity problem becomes finding the cut with the fewest
edges crossing it. Without loss of generality, we assumes s ∈ S.
The problem is that we don’t know which vertex v must be in
V − S, which is why we try all possible v .

For any flow network Gsv , the capacity of any cut C in Gsv is the
same as the number of edges in G that cross C since each edge
weight has 1. By the max-flow min-cut theorem, the capacity of
the minimum cut of Gsv is the same as its maximum flow, so we
can find the minimum number of edges needed to cut s and v
apart. Finally, after trying all possible v , we can find the minimum
number of edges needed to cut the graph into any two parts.
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