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Show the execution of the Edmonds-Karp algorithm on the
following flow network.
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Max flow value = 23

Cut capacity = 23
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Extend the flow properties and definitions to the multiple-source,
multiple-sink problem. Show that any flow in a multiple-source,
multiple-sink flow network corresponds to a flow of identical value
in the single-source, single-sink network obtained by adding a
supersource and a supersink, and vice versa.
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Suppose that there are multiple sources s, s, ..., S, and multiple
sinks ty, tp, ..., t, of the flow network G.

The definition becomes to find a flow f with maximum value

|f| = ZZf(s;, v) = ZZf(v, ti).

i=1 v i=1 v

The flow conservation property becomes

YweV—{s1,%, ..,Smti,t2,...,tht}, Z f(e) = Z f(e)

e out of v e into v
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Obtain a flow network G’ from G by adding a supersource s with
edges (s,s;) for 1 </ < m and a supersink t with edges (t;, t),
where the capacity of these edges are set to infinity. Then, any flow
in G corresponds to a flow of identical value in G’, and vice versa.
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The edge connectivity of an undirected graph is the minimum
number k of edges that must be removed to disconnect the graph.
For example, the edge connectivity of a tree is 1, and the edge
connectivity of a cyclic chain of vertices is 2. Show how to
determine the edge connectivity of an undirected graph

G = (V, E) by running a maximum-flow algorithm on at most |V/|
flow networks, each having O(V) vertices and O(E) edges.
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Step 1: Choose a vertex s € V arbitrarily.
Step 2: For each vertex v € V — {s}, build a flow network Gs, from G
as follows,

2.1: Each undirected edge (x,y) € E becomes two directed edges
(x,y) and (y,x) (auxiliary vertex can be added to avoid
antiparallel edges)

2.2: Remove the incoming edge of s and outgoing edge of v.

2.3: Each directed edge has weight 1.

Step 3: For each flow network G, obtain the maximum flow f;, with
source s and sink v.

Step 4: The edge connectivity k = min,cy_sq |fo|.
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Correctness: For any cut C = {S, V — S}, if the edges in G that
cross C are removed, then the graph is disconnected. Thus, the
edge connectivity problem becomes finding the cut with the fewest
edges crossing it. Without loss of generality, we assumes s € S.
The problem is that we don’t know which vertex v must be in

V — S, which is why we try all possible v.

For any flow network Gg,, the capacity of any cut C in G;, is the
same as the number of edges in G that cross C since each edge
weight has 1. By the max-flow min-cut theorem, the capacity of
the minimum cut of G, is the same as its maximum flow, so we
can find the minimum number of edges needed to cut s and v
apart. Finally, after trying all possible v, we can find the minimum
number of edges needed to cut the graph into any two parts.
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