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Question 1

Suppose you want to make change for n (HK) dollars using the fewest
number of coins. Assume that each coin’s value is an integer.

Give an O(nk)-time dynamic programming algorithm that makes change
for any set of k different coin denominations, assuming there is always the
1-dollar coin.
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Solution 1

Let us define c[j ] to be the minimum number of coins we need to make
change for j dollars. Let the coin denominations be d1, d2, ..., dk . Since
one of the coins is a one-dollar, there is a way to make change for any
amount j ≥ 1.
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Solution 1

Because of the optimal substructure, if we knew that an optimal solution
for the problem of making change for j dollars used a coin of denomination
di , we would have c[j ] = 1 + c[j − di ]. As base cases, we have that
c[j ] = 0 for all j ≤ 0.
To develop a recursive formulation, we have to check all denominations,
giving

c[j ] =

{
0 if j ≤ 0,
1 + min

1≤i≤k
{c[j − di ]} if j > 1.
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Solution 1

We can compute the c[j ] values in order of increasing j by using a table.
The following procedure does so, producing a table c[1..n]. It avoids even
examining c[j ] for j ≤ 0 by ensuring that j ≥ di before looking up
c[j − di ]. The procedure also produces a table denom[1..n], where
denom[j ] is the denomination of a coin used in an optimal solution to the
problem of making change for j dollars.

COMPUTE-CHANGE(n, d , k)

for j ← 1 to n
c[j ]←∞
for i ← 1 to k

if j ≥ di and 1 + c[j − di ] < c[j ]
c[j ]← 1 + c[j − di ]
denom[j ]← di

return c and denom
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Solution 1

This procedure obviously runs in O(nk) time.
We use the following procedure to output the coins used in the optimal
solution computed by COMPUTE-CHANGE:

GIVE-CHANGE(j , denom)

if j > 0
give one coin of denomination denom[j ]
GIVE-CHANGE(j − denom[j ], denom)

The initial call is GIVE-CHANGE(n, denom). Since the value of the first
parameter decreases in each recursive call, this procedure runs in O(n)
time.
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Question 2

KFCC is considering opening a series of restaurants along the Highway.
The n possible locations are along a straight line, and the distances of
these locations from the start of the Highway are, in miles and in
increasing order: m1,m2, . . . ,mn. The constraints are as follows:

1 At each location, KFCC may open at most one restaurant. The
expected profit from opening a restaurant at location i is pi , where
pi > 0 and i = 1, 2, . . . , n.

2 Any two restaurants should be at least k miles apart, where k is a
positive integer.

Give a dynamic programming algorithm that determines the locations to
open restaurants which maximizes the total expected profit.
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Solution 2: Step 1: Space of Subproblems

We define T [i ] to be the total profits from the best valid configuration
using locations 1, 2, . . . , i only.

We also store R[i ] which is 1 if there is a restaurant at location i and 0
otherwise.

Case 1: Base case. If i = 0, then there is no location available to choose
from to open a restaurant. So T [0] = 0.
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Solution 2: Step 2: Recursive Formulation

Case 2: General case. If i > 0, then we have two options.

1 Do not open a restaurant at location i
If we choose to not open a restaurant at location i , then the optimal
value will come about by considering how to obtain total profits from
the best valid configuration using the remaining location
1, 2, . . . , i − 1. This is just T [i − 1].

2 Open a restaurant at location i
If we open a restaurant at location i , then we gain the expected profit
pi . As we want to build a restaurant at location i , then the closest
location to build another restaurant should be at ci , where ci denote
the maximum j which mj ≤ mi − k . To obtain a maximum profit, we
need to obtain the maximum profits from the remaining locations
1, 2, . . . , ci . This is just pi + T [ci ].
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Solution 2: Step 2: Recursive Formulation

Since these are the only two possibilities, we can see that we have the
following rule for constructing table T :

T [i ] =

{
0, if i = 0

max{T [i − 1], pi + T [ci ]}, if i > 0

If T [i ] = T [i − 1], then R[i ] = 0; and R[i ] = 1 otherwise.

Note: We can compute ci = max{j : mj ≤ mi − k} for every i . Note that
for some values of i and ci may not exist in which case, we assume that
ci = 0.
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Solution 2: Step 3: Bottom-up Computation

Recurrence:

T [i ] = max{T [i − 1], pi + T [ci ]}

We compute and save T [i ] in such an order that: When it is time to
compute T [i ], the values of T [i − 1] and T [ci ] are available. So we will fill
the table in an order of increasing i .
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Solution 2

Algorithm to compute ci for every i

Compute-ci(m1, . . . ,mn, k)

1: for j = 1 to n do
2: m′j = mj − k
3: end for
4: i = 1, j = 1
5: while i ≤ n do
6: if m′i < mj then
7: ci = j − 1
8: i + +
9: else

10: j + +
11: end if
12: end while
13: return c1, . . . , cn
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Solution 2

Algorithm to find optimal profit and locations to open restaurants
Find-Optimal-Profit-And-Pos(m1, . . . ,mn, p1, . . . , pn, c1, . . . , cn,)

1: T [0] = 0
2: for i = 0 to n do
3: Not-Open-At-i = T [i − 1]
4: Open-At-i = pi + T [ci ]
5: if Not-Open-At-i > Open-At-i then
6: T [i ] =Not-Open-At-i
7: R[i ] =0
8: else
9: T [i ] =Open-At-i

10: R[i ] =1
11: end if
12: end for
13: return T [n] and R;
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Solution 2

Algorithm to report optimal locations to open restaurants

Report-Optimal-Locations(R, c1, . . . , cn,)

1: j = n
2: S = ∅
3: while j ≥ 1 do
4: if R[j ] = 1 then
5: Insert mj into S ;
6: j = cj
7: else
8: j −−
9: end if

10: end while
11: return S ;
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Solution 2: Running Time Analysis:

The Compute-ci takes O(n) time to compute ci for every i .

The Find Optimal-Profit-And-Pos takes O(n) time to compute T
and R.

The Report-Optimal-Locations takes O(n) time to report the
optimal locations for opening restaurants along the Highway.

Therefore, the overall running time is O(n).
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