
COMP3711: Design and Analysis of Algorithms

Tutorial 6

HKUST

Tutorial 6 COMP3711: Design and Analysis of Algorithms



Question 1

Consider the problem of making change for n cents using the fewest
number of coins. Assume that each coin’s value is an integer.

(a) Describe a greedy algorithm to make change consisting of
quarters, dimes, nickels, and pennies. Prove that your
algorithm yields an optimal solution.

(b) Suppose that the available coins are in the denoimations that
are powers of c . i.e. the denominations are c0, c1, ..., ck for
some integers c > 1 and k ≥ 1. Show that the greedy
algorithm always yields an optimal solution.

(c) Give a set of coin denominations for which the greedy
algorithm does not yield an optimal solution. Your set should
include a penny so that there is a solution for every value of n.

Tutorial 6 COMP3711: Design and Analysis of Algorithms



Question 2

In the old days, files were stored on tapes rather than disks.
Reading a file from tape isn’t like reading a file from disk; first we
have to fast-forward past all the other files, and that takes a
significant amount of time. Suppose we have a set of n files that
we want to store on a tape, where file i has length L[i ]. Given the
array L[1..n], your job is to design an algorithm to find the optimal
order to store these files on a tape to minimize the cost. Note that
the cost of reading file i is total length of all files stored before it,
including file i itself. Your algorithm should run in O(n log n) time.

Tutorial 6 COMP3711: Design and Analysis of Algorithms



Question 2

(a) Suppose each file is accessed with equal probability, and you
want to minimize the expected cost. For example, if
L[1] = 3, L[2] = 6, L[3] = 2, you would want to use the order
(3, 1, 2). This way, the expected cost is
2/3 + (2 + 3)/3 + (2 + 3 + 6)/3 = 6, which is optimal. You
need to prove the optimality of your algorithm.

(b) Suppose the files are not accessed uniformly; file i will have
probability p[i ] to be accessed. Given the array L[1..n] and
p[1..n], how would you find an ordering that minimizes the
expected cost? For example, if L[1] = 3, L[2] = 6, L[3] = 2
and p[1] = 1/6, p[2] = 1/2, p[3] = 1/3, then the optimal
ordering would be (3, 2, 1) with an expected cost of
2/3 + (2 + 6)/2 + (2 + 6 + 3)/6 = 6.5. Remember to prove
the optimality of your algorithm.

Tutorial 6 COMP3711: Design and Analysis of Algorithms


