
COMP3711: Design and Analysis of Algorithms

Tutorial 5

HKUST

Tutorial 5 COMP3711: Design and Analysis of Algorithms



Question 1

Design an O(n log k)-time algorithm to merge k sorted lists into
one sorted list by making use of priority queues, where n is the
total number of elements in all input lists. Note that each sorted
list may contain different number of elements.

Tutorial 5 COMP3711: Design and Analysis of Algorithms



Solution 1

1. Give a label to each element to indicate which sorted list that
the element belongs to. //O(n)

2. Build a min-heap of k elements, where the k elements are the
first element of each sorted list. //O(k log k) or O(k)

3. Perform Extract-Min operation and output it. //O(log k)

4. If the extracted element belongs to the i-th sorted list, we
insert the next minimum element of the i-th sorted list into
the min-heap. //O(log k)

5. Repeat 3 and 4 until all the n elements have been traversed.

Step 3 and 4 will be repeated at most n times. Therefore, the
running time of this algorithm is
n + k log k + 2n log k = O(n log k).

Tutorial 5 COMP3711: Design and Analysis of Algorithms



Question 2

Given n/k lists where each list contain k elements and the
elements in list i − 1 are less than the elements in list i for i = 1 to
n/k . Show that Ω(n log k) is the lower bound for any
comparison-based sorting algorithm to sort the n/k lists into one
sorted list with n elements. Note that you should not simply
combine the lower bounds for the individual lists.

Tutorial 5 COMP3711: Design and Analysis of Algorithms



Solution 2

For each list, we have k! possible ordering and we need to combine
all the n/k lists into one list. Therefore, the total number of
possible ordering is (k!)n/k , since the elements in list i − 1 are less
than the elements in list i for i = 1 to n/k .
In other words, the decision tree for sorting these n elements
contain (k!)n/k leaves.

Tutorial 5 COMP3711: Design and Analysis of Algorithms



Solution 2

A binary tree of height h has at most 2h leaves.
Thus,

2h ≥ (k!)n/k

⇒ h ≥ log((k!)n/k)

= n/k · log(k!)

≥ n/k · log((k/2)k/2)

= n/k · k/2 · log(k/2)

= Ω(n log(k))

Therefore, any comparison-based sorting algorithm requires
Ω(n log k) comparisons in the worst-case for solving this problem.

Tutorial 5 COMP3711: Design and Analysis of Algorithms



Question 3

Give an array of m positive integers, where different integers may
have different number of bits, but the total number of bits over all
the integers in the array is n. Show how to sort the array in O(n)
time.

Note that running radix sort directly won’t work, as the maximum
integer may be as large as 2n, so radix sort would take
O(m logm 2n) = O(mn/ logm) time.

Tutorial 5 COMP3711: Design and Analysis of Algorithms



Solution 3

1. Use counting sort to sort the elements based on the number
of bits that the elements contain.

2. Group the elements with same number of bits into same
group.

3. Use radix sort to sort the elements in each group.

For step 1, the running time of counting sort is O(m + b) where b
is the maximum number of bits among the m elements. Obviously,
m ≤ n as each element has at least one bit and b ≤ n as the total
number of bits is n. Therefore, the running time of step 1 is O(n).

Tutorial 5 COMP3711: Design and Analysis of Algorithms



Solution 3

For step 2, we simply use linear scan to group the elements.
Therefore, the running time of step 2 is O(m) = O(n).

For step 3, let mi be the number of elements that contain i bits.
Use radix sort to sort the elements in group i is
O(mi logmi

2i ) = O(imi/ logmi ) = O(imi ). Therefore, the running
time of step 3 is ∑

i :mi>0

O(imi ) = O(n)

since the total number of bits is
∑

i :mi>0 i ·mi = n.

Tutorial 5 COMP3711: Design and Analysis of Algorithms


