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Question 1

Recall the randomized selection algorithm. We pick a pivot
randomly, divide the array into 3 segments: left, pivot, and right,
and then either stops immediately or recursively solve the problem
in the left or the right part of the array. As in the analysis of
quicksort, we denote by z1, . . . , zn the elements in sorted order.
Suppose the randomized selection algorithm is given the task of
finding the k-th smallest element (namely, zk). What is the
probability that zi and zj (i < j) are ever compared by the
algorithm? [Hint: consider the following 3 cases separately:
k < i , i ≤ k ≤ j , k > j .] Then use the indicator variable technique
to show that the expected running time of the randomized
selection algorithm is O(n).
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Solution 1

Define Xij = 1 if zi and zj are compared by the algorithm, and 0
otherwise. Consider the following 3 cases:

(a) i ≤ k ≤ j : This is the same as in quicksort: if the pivot is zi
or zj , then zi and zj will be compared; if the pivot is in
{zi+1, . . . , zj−1}, then they will not be compared. Other
pivots do not decide whether zi or zj will be compared. So
Pr[Xij = 1] = 2/(j − i + 1).

(b) i < j < k : In this case, if the pivot is zi or zj , then zi and zj
will be compared; if the pivot is in {zi+1, . . . , zk} but not zj ,
then they will not be compared. Other pivots do not decide
whether zi or zj will be compared. So
Pr[Xij = 1] = 2/(k − i + 1).

(c) k < i < j : In this case, if the pivot is zi or zj , then zi and zj
will be compared; if the pivot is in {zk , . . . , zj−1} but not zi ,
then they will not be compared. Other pivots do not decide
whether zi or zj will be compared. So
Pr[Xij = 1] = 2/(j − k + 1).
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Solution 1

By the indicator random variable technique, the expected total
number of comparisons is

∑
i<j E [Xij ] =

∑
i<j Pr[Xij = 1], so we

just need to add up all these probabilities.
The probabilities in case (a) are as follows:
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Each diagonal sums up to O(1) and there are O(n) diagonals, so
the total is O(n).
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Solution 1

The probabilities in case (b) are as follows:
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Each column sums up to O(1) and there are O(n) columns, so the
total is O(n).
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Solution 1

The probabilities in case (c) are as follows:
i : k + 1 k + 2 k + 3 k + 4 . . . n − 1

j : k + 2 2
3

k + 3 2
4

2
4

k + 4 2
5

2
5

2
5

. . . . . .
n 2

n−k+1
2

n−k+1
2

n−k+1
2

n−k+1 . . . 2
n−k+1

Each row sums up to O(1) and there are O(n) rows, so the total is
O(n).
Thus, the total sum over all three cases is still O(n).
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Question 2

The analysis of the expected running time of randomized quicksort
in lecture note assumes that all element values are distinct. In this
problem, we examine what happens when they are not.

(a) Suppose that all element values are equal. What would be
randomized quicksort’s running time in this case?

(b) The Partition procedure returns an index q such that each
element of A[p...q − 1] is less than or equal to A[q] and each
element of A[q + 1...r ] is greater than A[q]. Modify the
Partition procedure to produce a procedure
Partition′(A, p, r), which permutes the elements of A[p...r ]
and returns two indices q and t, where p ≤ q ≤ t ≤ r , such
that

• all elements of A[q...t] are equal,
• each element of A[p...q − 1] is less than A[q], and
• each element of A[t + 1...r ] is greater than A[q]

Like Partition, your Partition′ procedure should take
Θ(r − p) time.
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Question 2

(c) Modify the Quicksort procedure to produce
Quicksort′(A, p, r) that calls Paritition′ and recurses
only on partitions of elements not known to be equal to each
other.

(d) Using Quicksort′, how would you adjust the analysis in
lecture note to avoid the assumption that all elements are
distinct?
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Solution 2

(a) The partition procedure will always partition the elements into
two subsets where one subset contains n− 1 elements and the
other subset contains 0 elements because all the element
values are the same. So the running time is
T (n) = T (n − 1) + Θ(n) which is Θ(n2).
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Solution 2

(b) Partition′(A, p, r):
i = Random(p, r)
exchange A[i ] with A[r ]
x ← A[r ]
i ← p − 1
k ← p − 1
for j ← p to r − 1

if A[j ] = x then
k ← k + 1
exchange A[k] with A[j ]

else if A[j ] < x then
i ← i + 1
k ← k + 1
exchange A[k] with A[j ]
exchange A[i ] with A[k]

exchange A[k + 1] with A[r ]
return (i + 1, k + 1)

Tutorial 4 COMP3711: Design and Analysis of Algorithms



Solution 2

(c) Quicksort′(A, p, r):
if p ≥ r then return
(q, t) =Partition′(A, p, r)
Quicksort′(A, p, q − 1)
Quicksort′(A, t + 1, r)
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Solution 2

(d) Relabel the elements from small to large as z1, z2, . . . , zn.
We use a multi-ary tree representation which is similar to the
binary tree representation except that the middle children of a
pivot correspond to the elements equal to the pivot. Similarly,
two elements are compared iff they are ancestor-descendant.
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Solution 2

For any pair of zi and zj , every element in {zi , . . . , zj} is equally
likely to be the lca of zi and zj . In addition, there can be some
elements equal to zi or zj outside the range of {zi , . . . , zj}, which
can also be the lca of zi and zj . So, Pr(zi and zj are compared) is
at most 2/(j − i + 1).

Let Xij = 1 if zi is compared with zj .
E (# of comparisons) =

∑
i<j E (Xij) =

∑
i<jPr(zi and zj are

compared) ≤
∑

i<j 2/(j − i + 1) = O(n log n)
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