COMP3711: Design and Analysis of Algorithms

Tutorial 3

HKUST

Give asymptotic tight bounds for T(n) by master theorem.

(a)

$$T(1) = 1$$

 $T(n) = 3T(n/4) + n$ if $n > 1$

(b)

$$T(1) = 1$$

 $T(n) = 3T(n/4) + 1$ if $n > 1$

(c)

$$T(1) = 1$$

 $T(n) = 4T(n/2) + n^2$ if $n > 1$

(d)

$$T(1) = 1$$

 $T(n) = 4T(n/3) + n^2$ if $n > 1$

Consider the HIRE-ASSISTANT algorithm in the lecture note, assuming that the candidates are presented in a random order, what is the probability that you hire exactly one time? What is the probability that you hire exactly n times?

Use indicator random variables to solve the following problem, which is known as the **hat-check problem**. Each of *n* customers gives a hat to a hat-check person at a restaurant. The hat-check person gives the hats back to the customers in a random order. What is the expected number of customers who get back their own hat?

Let A[1..n] be an array of n distinct numbers. If i < j and A[i] > A[j], then the pair (i,j) is called an **inversion** of A. Suppose that the elements of A form a uniform random permutation of $\langle 1, 2, ..., n \rangle$. Use indicator random variables to compute the expected number of inversions.