COMP3711: Design and Analysis of Algorithms

Tutorial 2

HKUST

Tutorial 2 COMP3711: Design and Analysis of Algorithms



Give asymptotic upper bounds for T(n) by recursion tree
approach. Make your bounds as tight as possible.

(a)

T(1) =1

T(n) = T(n/2)+n if n>1
(b)

T(1) = T(2)=1

T(n) = T(n—2)+1 if n>2
(c)

T(1) =1

T(n) = T(n/3)+n ifn>1

Tutorial 2 COMP3711: Design and Analysis of Algorithms



Solution 1 (a)

cost
n -—--=---=--- n
nf2--------- n/2
logyn
nf22--------- n/2?
1 -—--=---=--- 1
total = n+n/2+n/2%---+1

=0(n)

Tutorial 2 COMP3711: Design and Analysis of Algorithms



Solution 1 (a)

Set h=log, n

T(n)

IN

n+ T(n/2)
n+n/2+ T(n/2%)
n+n/24n/2° + T(n/23)

n+n/24n/2%+-- 4 n/2"72 4 n/2h=1 4 T(n/2"
n(14+1/241/2%2+---+1/2"2 41721 4 T(n/2")
n(1+1/2+1/22+--- +1/21 4 )+ T(n/2"
2-n+T(1)

O(n)

Tutorial 2 COMP3711: Design and Analysis of Algorithms



Solution 1 (b)

cost
1 oo o= 1
1 mmmmm - 1

[(n—1)/2]
1 - 1
IR |
total = 1 + [(n —1)/2]
=0(n)

Tutorial 2 COMP3711: Design and Analysis of Algorithms



Solution 1 (b)

T(n) = T(h—-2)+1
= T(n—2-2)+2
= T(n-3-2)+3

= T(n—L(n—1)/2]-2) + [(n—1)/2]
T(n) = 1+[(n—1)/2) =[(n/2)] = O(n)

Tutorial 2 COMP3711: Design and Analysis of Algorithms



Solution 1 (c)

cost
N —-—————— n
nf3--------- n/3
logsn
nf3--------- n/3?
| 1
total = n+n/3+n/3%---+1

=0(n)

Tutorial 2 COMP3711: Design and Analysis of Algorithms



Solution 1 (c)

Set h = logzn

T(n)

1 VAN

n+ T(n/3)
n+n/3+ T(n/3%)
n+n/34n/3%+ T(n/3%)

n+n/3+n/3%+---+n/3"2 4 n/31 4 T(n/3M
n(1+1/3+1/3%+---+1/32 1 1/3"1) 1 T(n/3M)
n(1+1/3+1/3%+--- +1/31 4 )+ T(n/3"
3n/2+ T(1)

O(n)

Tutorial 2 COMP3711: Design and Analysis of Algorithms



Given a sorted array A[l..n] of n distinct integers (positive or
negative), give an algorithm to find the index i such that A[i] = i,
if such an index exists. If there are many such indices, the
algorithm may return any one of them. Solve this problem in
O(log n) time.

Tutorial 2 COMP3711: Design and Analysis of Algorithms



INDEX-SEARCH(A, s, t)
if (s=t) // O(1)
if (A[s] =5s)
return s;
else
return -1;
m < [335];
if (Alm]=m) returnm; // O(1)
if (A[m] > m)
return INDEX-SEARCH(A,s,m); // T(|5])
else
return INDEX-SEARCH(A,m+1,t); // T([5])

Tutorial 2 COMP3711: Design and Analysis of Algorithms



If Alm] > m, any i > m will have A[i] > i, since the array is sorted
and all numbers are distinct. So the latter half of the array cannot
possibly contain a desired index. Similarly, if Alm] < m, any i < m
will have A[i] < i. In either case, we can throw away half of the
array and recursively solve the problem for the other half. The
running time of the algorithm has the recurrence

T(n) = T(n/2) 4+ O(1), which solves to T(n) = O(log n).

Tutorial 2 COMP3711: Design and Analysis of Algorithms



Let A[1..n] be an array of n elements. A majority element of A is
any element occuring more than n/2 times (e.g., if n =8, then a
majority element should occur at least 5 times). Your task is to
design an algorithm that finds a majority element, or reports that
no such element exists.

(a) Suppose that you are not allowed to order the elements, the
only way you can access the elements is to check whether two
elements are equal or not. Design an O(nlog n)-time
algorithm for this problem.

(b) Design an O(n) algorithm for this problem. Similar to (a),
you are still only allowed to use equality tests on the elements.

Tutorial 2 COMP3711: Design and Analysis of Algorithms



Solution 3 (a)

Divide A into two parts A[1..n/2] and A[n/2 + 1..n]. Since a
majority element in A must be a majority in at least one of the
halves, we recursively find a majority in A[l..n/2] and

Aln/2 + 1..n]. If A[1..n/2] returns a majority element e, we scan
the entire A to count its occurrences. If it's more than n/2, we
return it. We do the same thing for the majority returned from
A[n/2 4 1..n] if it returns one. If we cannot find a majority after
this, we return “no majority exists”. The base case is when n =1,
we simply return the only element as the majority. The running
time of the algorithm satisfies T(n) = 2T(n/2) + O(n), which
solves to T(n) = O(nlog n).

Tutorial 2 COMP3711: Design and Analysis of Algorithms



Solution 3 (b)

Initially set e = NULL and a counter c = 0. Then for i =1to n

we do the following: If ¢ =0, we set e = A[i]. If ¢ > 0, we check
if e = A[i]. If so, we increment ¢ by 1; else we decrement c by 1.
We claim that in the end, e is the only possible majority if there

exists one. Then we scan A again to count the actual number of
occurrences of e and decide if it is indeed a majority.

Tutorial 2 COMP3711: Design and Analysis of Algorithms



