COMP3711: Design and Analysis of Algorithms

COMP3711: Design and Analysis of Algorithms	Tutorial 1	2/15
Asymptotic notations		
Asymptotic upper bound		
Definition (big-Ob)		

f(n) = O(g(n)): There exists constant c > 0 and n_0 such that $f(n) \le c \cdot g(n)$ for $n \ge n_0$

Asymptotic lower bound

Definition (big-Omega)

 $f(n) = \Omega(g(n))$: There exists constant c > 0 and n_0 such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$.

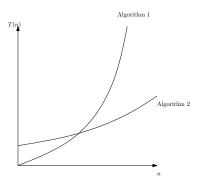
Asymptotic tight bound

Definition (big-Theta)

$$f(n) = \Theta(g(n))$$
: $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

Comparing time complexity

Example:



Algorithm 2 is clearly superior

- T(n) for Algorithm 1 is $O(n^3)$
- T(n) for Algorithm 2 is $O(n^2)$
- Since n^3 grows much more rapidly, we expect Algorithm 1 to take much more time than Algorithm 2 when *n* increases

For all real $a \neq 0$, m and n, we have the following identities:

$$a^{0} = 1$$

$$a^{1} = a$$

$$a^{-1} = 1/a$$

$$(a^{m})^{n} = (a^{n})^{m} = a^{mn}$$

$$a^{m}a^{n} = a^{m+n}$$

$$a^{1/n} = \sqrt[n]{a}$$

Some Basic mathematic background on logarithms

For all real a > 0, b > 0, c > 0, and n:

$$a = b^{\log_b a}$$
$$\log_c(ab) = \log_c a + \log_c b$$
$$\log_b a^n = n \log_b a$$
$$\log_b a = \frac{\log_c a}{\log_c b}$$
$$\log_b(1/a) = -\log_b a$$
$$\log_b a = \frac{1}{\log_a b}$$
$$a^{\log_b n} = n^{\log_b a}$$

Tutorial 1

5/15

For each of the following statement, answer whether the statement is true or false.

(a)
$$1000n + n \log n = O(n \log n)$$
.
(b) $n^2 + n \log(n^3) = O(n \log(n^3))$.
(c) $n^3 = \Omega(n)$.
(d) $n^2 + n = \Omega(n^3)$.
(e) $n^3 = O(n^{10})$.
(f) $n^3 + 1000n^{2.9} = \Theta(n^3)$
(g) $n^3 - n^2 = \Theta(n)$

COMP3711: Design and Analysis of Algorithms	Tutorial 1	7/15
Solution 1		

- (a) True.
- (b) False.
- (c) True.
- (d) False.
- (e) True.
- (f) True.
- (g) False.

Question 2

For each pair of expressions (A, B) below, indicate whether A is O, Ω , or Θ of B. Note that zero, one, or more of these relations may hold for a given pair; list all correct ones. Justify your answers.

(a)
$$A = n^3 + n \log n$$
; $B = n^3 + n^2 \log n$
(b) $A = \log \sqrt{n}$; $B = \sqrt{\log n}$.
(c) $A = n \log_3 n$; $B = n \log_4 n$.
(d) $A = 2^n$; $B = 2^{n/2}$.
(e) $A = \log(2^n)$; $B = \log(3^n)$.

	A	Relation:	В
(a)	$n^3 + n \log n$	Ω, Θ, O	$n^3 + n^2 \log n$
(b)	$\log \sqrt{n}$	Ω	$\sqrt{\log n}$
(c)	n log ₃ n	Ω, Θ, O	n log ₄ n
(d)	2 ⁿ	Ω	2 ^{n/2}
(e)	$\log(2^n)$	Ω, Θ, O	$\log(3^n)$

Solution 2: Step by step

Notes:

- (a) Both are $\Theta(n^3)$, the lower order terms can be ignored. Note that if $A(n) = \Theta(B(n))$, then automatically A(n) = O(B(n)) and $A(n) = \Omega(B(n))$.
- (b) After simplifying, A is $(1/2) \log n$, and B is $\sqrt{\log n}$. Substituting $m = \log n$, we can see ratio A/B grows as $m/2\sqrt{m} = \sqrt{m}/2$ which tends to infinity as n (and hence m) tends to infinity, i.e., $A(n) = \Omega(B(n))$.
- (c) Log base conversion only introduces a constant factor.
- (d) The ratio is $2^n/2^{n/2} = (2)^{n/2}$ which goes to infinity in the limit.
- (e) After simplifying these are $n \log 2$ and $n \log 3$, both of which are $\Theta(n)$.

Question 3

Suppose $T_1(n) = O(f(n))$ and $T_2(n) = O(f(n))$. Which of the following are true? Justify your answers.

(a)
$$T_1(n) + T_2(n) = O(f(n))$$

(b) $\frac{T_1(n)}{T_2(n)} = O(1)$
(c) $T_1(n) = O(T_2(n))$

Solution 3

(a) True. Since $T_1(n) = O(f(n))$ and $T_2(n) = O(f(n))$, it follows from the definition that there exist constants $c_1, c_2 > 0$ and positive integers n_1, n_2 such that $T_1(n) \le c_1 f(n)$ for $n \ge n_1$ and $T_2(n) \le c_2 f(n)$ for $n \ge n_2$. This implies that, $T_1(n) + T_2(n) \le (c_1 + c_2)f(n)$ for $n \ge \max(n_1, n_2)$. Thus, $T_1(n) + T_2(n) = O(f(n))$.

(b) False. For a counterexample to the claim, let
$$T_1(n) = n^2$$
, $T_2(n) = n$, $f(n) = n^2$. Then $T_1(n) = O(f(n))$ and $T_2(n) = O(f(n))$ but $\frac{T_1(n)}{T_2(n)} = n \neq O(1)$.

(c) False. We can use the same counterexample as in part (b). Note that $T_1(n) \neq O(T_2(n))$

Let f(n) and g(n) be non-negative functions. Using the basic definition of Θ -notation, prove that $\max(f(n), g(n)) = \Theta(f(n) + g(n)).$

COMP3711: Design and Analysis of Algorithms Tutorial 1 14/15 Solution 4

For any value of n, $\max(f(n), g(n))$ is either equal to f(n) or equal to g(n). Therefore, for all n,

 $\max(f(n),g(n)) \leq f(n) + g(n).$

Using c = 1 and $n_0 = 1$ in the big-oh definition, it follows that $\max(f(n), g(n)) = O(f(n) + g(n)).$

Also, for all n,

$$\max(f(n),g(n)) \ge f(n)$$

and

$$\max(f(n),g(n)) \ge g(n).$$

Adding we have

$$2 \times \max(f(n),g(n)) \ge f(n) + g(n).$$

Therefore,

$$\max(f(n),g(n)) \geq \frac{1}{2}(f(n)+g(n)).$$

Using c = 1/2 and $n_0 = 1$ in the Omega definition, it follows that

$$\max(f(n),g(n)) = \Omega(f(n) + g(n)).$$

Since
$$\max(f(n), g(n)) = O(f(n) + g(n))$$
 and
 $\max(f(n), g(n)) = \Omega(f(n) + g(n))$, it implies that
 $\max(f(n), g(n)) = \Theta(f(n) + g(n))$.