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Asymptotic notations

Asymptotic upper bound

Definition (big-Oh)

f (n) = O(g(n)): There exists constant c > 0 and n0 such that
f (n)≤c · g(n) for n ≥ n0

Asymptotic lower bound

Definition (big-Omega)

f (n) = Ω(g(n)): There exists constant c > 0 and n0 such that
f (n) ≥ c · g(n) for n ≥ n0.

Asymptotic tight bound

Definition (big-Theta)

f (n) = Θ(g(n)): f (n) = O(g(n)) and f (n) = Ω(g(n))
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Comparing time complexity

Example:

n

T (n)

Algorithm 1

Algorithm 2

Algorithm 2 is clearly superior

T (n) for Algorithm 1 is O(n3)

T (n) for Algorithm 2 is O(n2)

Since n3 grows much more rapidly, we expect Algorithm 1 to
take much more time than Algorithm 2 when n increases
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Some Basic mathematic background on exponentials

For all real a 6= 0,m and n, we have the following identities:

a0 = 1

a1 = a

a−1 = 1/a

(am)n = (an)m = amn

aman = am+n

a1/n = n
√
a
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Some Basic mathematic background on logarithms

For all real a > 0, b > 0, c > 0, and n:

a = blogb a

logc(ab) = logc a + logc b

logb a
n = n logb a

logb a =
logc a

logc b

logb(1/a) = − logb a

logb a =
1

loga b

alogb n = nlogb a
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Question 1

For each of the following statement, answer whether the statement
is true or false.

(a) 1000n + n log n = O(n log n).

(b) n2 + n log(n3) = O(n log(n3)).

(c) n3 = Ω(n).

(d) n2 + n = Ω(n3).

(e) n3 = O(n10).

(f) n3 + 1000n2.9 = Θ(n3)

(g) n3 − n2 = Θ(n)
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Solution 1

(a) True.

(b) False.

(c) True.

(d) False.

(e) True.

(f) True.

(g) False.
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Question 2

For each pair of expressions (A,B) below, indicate whether A is O,
Ω, or Θ of B. Note that zero, one, or more of these relations may
hold for a given pair; list all correct ones. Justify your answers.

(a) A = n3 + n log n; B = n3 + n2 log n.

(b) A = log
√
n; B =

√
log n.

(c) A = n log3 n; B = n log4 n.

(d) A = 2n; B = 2n/2.

(e) A = log(2n); B = log(3n).
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Solution 2

A Relation: B

(a) n3 + n log n Ω,Θ,O n3 + n2 log n

(b) log
√
n Ω

√
log n

(c) n log3 n Ω,Θ,O n log4 n

(d) 2n Ω 2n/2

(e) log(2n) Ω,Θ,O log(3n)
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Solution 2: Step by step

Notes:

(a) Both are Θ(n3), the lower order terms can be ignored.
Note that if A(n) = Θ(B(n)), then automatically
A(n) = O(B(n)) and A(n) = Ω(B(n)).

(b) After simplifying, A is (1/2) log n, and B is
√

log n.
Substituting m = log n, we can see ratio A/B grows as
m/2
√
m =

√
m/2 which tends to infinity as n (and hence m)

tends to infinity, i.e., A(n) = Ω(B(n)).

(c) Log base conversion only introduces a constant factor.

(d) The ratio is 2n/2n/2 = (2)n/2 which goes to infinity in the
limit.

(e) After simplifying these are n log 2 and n log 3, both of which
are Θ(n).
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Question 3

Suppose T1(n) = O(f (n)) and T2(n) = O(f (n)). Which of the
following are true? Justify your answers.

(a) T1(n) + T2(n) = O(f (n))

(b) T1(n)
T2(n)

= O(1)

(c) T1(n) = O(T2(n))
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Solution 3

(a) True. Since T1(n) = O(f (n)) and T2(n) = O(f (n)), it follows
from the definition that there exist constants c1, c2 > 0 and
positive integers n1, n2 such that T1(n) ≤ c1f (n) for n ≥ n1
and T2(n) ≤ c2f (n) for n ≥ n2. This implies that,
T1(n) + T2(n) ≤ (c1 + c2)f (n) for n ≥ max(n1, n2). Thus,
T1(n) + T2(n) = O(f (n)).

(b) False. For a counterexample to the claim, let
T1(n) = n2,T2(n) = n, f (n) = n2. Then T1(n) = O(f (n))

and T2(n) = O(f (n)) but T1(n)
T2(n)

= n 6= O(1).

(c) False. We can use the same counterexample as in part (b).
Note that T1(n) 6= O(T2(n))

Tutorial 1 COMP3711: Design and Analysis of Algorithms



COMP3711: Design and Analysis of Algorithms Tutorial 1 13/15

Question 4

Let f (n) and g(n) be non-negative functions. Using the basic
definition of Θ-notation, prove that
max(f (n), g(n)) = Θ(f (n) + g(n)).
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Solution 4

For any value of n, max(f (n), g(n)) is either equal to f (n) or equal
to g(n). Therefore, for all n,

max(f (n), g(n)) ≤ f (n) + g(n).

Using c = 1 and n0 = 1 in the big-oh definition, it follows that

max(f (n), g(n)) = O(f (n) + g(n)).

Also, for all n,
max(f (n), g(n)) ≥ f (n)

and
max(f (n), g(n)) ≥ g(n).

Adding we have

2×max(f (n), g(n)) ≥ f (n) + g(n).

Therefore,

max(f (n), g(n)) ≥ 1

2
(f (n) + g(n)).
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Solution 4

Using c = 1/2 and n0 = 1 in the Omega definition, it follows that

max(f (n), g(n)) = Ω(f (n) + g(n)).

Since max(f (n), g(n)) = O(f (n) + g(n)) and
max(f (n), g(n)) = Ω(f (n) + g(n)), it implies that
max(f (n), g(n)) = Θ(f (n) + g(n)).
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