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Asymptotic notations

Asymptotic upper bound

Definition (big-Oh)

f(n) = O(g(n)): There exists constant ¢ > 0 and ng such that
f(n)<c - g(n) for n> ny

Asymptotic lower bound

Definition (big-Omega)

f(n) = Q(g(n)): There exists constant ¢ > 0 and ng such that
f(n) > c-g(n) for n > ng.

Asymptotic tight bound

Definition (big-Theta)

f(n) = ©(g(n)): f(n) = O(g(n)) and f(n) = Q(g(n))
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Comparing time complexity

Example:

Algorithm 1

Algorithm 2

Algorithm 2 is clearly superior
e T(n) for Algorithm 1 is O(n%)
o T(n) for Algorithm 2 is O(n?)
@ Since n3 grows much more rapidly, we expect Algorithm 1 to
take much more time than Algorithm 2 when n increases
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Some Basic mathematic background on exponentials

For all real a £ 0, m and n, we have the following identities:

L =1
al = a
al = 1/a
(am)n — (an)m — amn
aman — am—l—n
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Some Basic mathematic background on logarithms

For all real a > 0,b>0,c > 0, and n:

3 = blogba
log.(ab) = log.a+log.b
log,a” = nlogya
log.a
logpa = B
&b log. b
logy(1/a) = —logya
| 1
ogpa =
Bb log, b
alogb no_ nlogba

Tutorial 1 COMP3711: Design and Analysis of Algorithms



COMP3711: Design and Analysis of Algorithms Tutorial 1

Question 1

For each of the following statement, answer whether the statement
is true or false.

(a) 1000n + nlog n = O(nlog n).

(b) n?+ nlog(n®) = O(nlog(n3)).
(c) n®=Q(n).

(d) n? 4+ n=Q(n%).

(e) n® = 0O(n'?).

(f) n®+1000n%° = ©(n%)

(g) n*— 1 = O(n)
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Solution 1

(a) True.
(b) False.
(c) True.
(d) False.
(e) True.
(f) True.
(g) False.
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Question 2

For each pair of expressions (A, B) below, indicate whether A is O,
Q, or © of B. Note that zero, one, or more of these relations may
hold for a given pair; list all correct ones. Justify your answers.
(a) A=n3+nlogn;, B=n3+n?logn.

(b) A=log\/n; B=/Togn.

(c) A=nlogzn; B = nlogyn.

(dy A=2", B =22

(e) A=log(2"); B =log(3").
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Solution 2

A Relation: B
(a) n*+4nlogn 9,0,0 nd+nlogn
(b) log+/n Q Viogn
(c) nlogs n Q2,0,0 nlog, n
(d) 2" Q 2n/2

(e) log(2") Q,0,0 log(3")
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Solution 2: Step by step

Notes:

(a) Both are ©(n%), the lower order terms can be ignored.
Note that if A(n) = ©(B(n)), then automatically
A(n) = O(B(n)) and A(n) = Q(B(n)).

(b) After simplifying, A'is (1/2)logn, and B is /log n.
Substituting m = log n, we can see ratio A/B grows as
m/2\/m = y/m/2 which tends to infinity as n (and hence m)
tends to infinity, i.e., A(n) = Q(B(n)).

(c) Log base conversion only introduces a constant factor.

(d) The ratio is 2"/2"/? = (2)"/2 which goes to infinity in the
limit.

(e) After simplifying these are nlog?2 and nlog3, both of which
are ©(n).
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Question 3

Suppose T1(n) = O(f(n)) and Ta(n) = O(f(n)). Which of the
following are true? Justify your answers.

(a) Ti(n) + Ta(n) = O(f(n))

(b) Tm = 0(1)

(c) Ta(n) = O(Ta(n))
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Solution 3

(a) True. Since Ty(n) = O(f(n)) and T(n) = O(f(n)), it follows
from the definition that there exist constants ¢;, ¢, > 0 and
positive integers ny, ny such that T1(n) < ¢i1f(n) for n > m
and Ty(n) < caf(n) for n > ny. This implies that,

T1(n) + Ta(n) < (c1 + c2)f(n) for n > max(ny, n2). Thus,
T1(n) 4+ Ta(n) = O(f(n)).

(b) False. For a counterexample to the claim, let

Ti(n) = n?, To(n) = n, f(n) = n?>. Then T1(n) = O(f(n))

and To(n) = O(f(n)) but 744 = n £ O(1).

(c) False. We can use the same counterexample as in part (b).
Note that T1(n) # O(T2(n))
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Question 4

Let f(n) and g(n) be non-negative functions. Using the basic
definition of ©-notation, prove that

max(f(n), g(n)) = ©(f(n) + g(n)).
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Solution 4

For any value of n, max(f(n),g(n)) is either equal to f(n) or equal
to g(n). Therefore, for all n,
max(f(n), g(n)) < f(n) + g(n).
Using ¢ = 1 and ng = 1 in the big-oh definition, it follows that
max(f(n), g(n)) = O(f(n) + g(n)).
Also, for all n,
max(f(n), g(n)) = f(n)
and
max(f(n), g(n)) = g(n).
Adding we have
2 x max(f(n),g(n)) > f(n) + g(n).
Therefore, )
max(f(n), g(n)) = 5 (f(n) + g(n))-
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Solution 4

Using ¢ = 1/2 and ngp = 1 in the Omega definition, it follows that
max(f(n), g(n)) = Q(f(n) + g(n)).

(
Since max(f(n), g(n)) = O(f(n) + g(n)) and
max(f(n),g(n)) = Q(f(n) + g(n)), it implies that
+

) (n) + g(n))
max(f(n), g(n)) = ©(f(n) + g(n)).
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