COMP 3711: Mathematical Background

Common Log Identities:

$$\log(a \cdot b) = \log a + \log b$$

$$\log(a^{b}) = b \log a$$

$$a^{\log_{a} b} = b$$

$$a^{\log_{b} c} = c^{\log_{b} a}$$

$$\log_{a} n = \frac{\log_{b} n}{\log_{b} a} = \Theta(\log n)$$

$$\log(n!) = \Theta(n \log n)$$

Common Summations: Let $c \neq 1$ be any positive constant and assume $n \geq 0$. The following are the most common summations that arise when analyzing algorithms and data structures. You should memorize their asymptotic values.

Name of Series	Formula	Closed-Form Solution	Asymptotic Form
Constant	$\sum_{n=1}^{n} 1$	= n	$\Theta(n)$
Arithmetic	$\sum_{i=1}^{n} i = 1 + 2 + \dots + n$	$=\frac{n(n+1)}{2}$	$\Theta(n^2)$
Polynomial	$\sum_{i=1}^{n} i^{c} = 1^{c} + 2^{c} + \dots + n^{c}$	(none for general c)	$\Theta(n^{c+1})$
Geometric	$\sum_{i=0}^{n-1} c^{i} = 1 + c + c^{2} + \dots + c^{n-1}$	$=\frac{c^n-1}{c-1}$	$\Theta(c^n) \ (c > 1)$
Harmonic	$\sum_{i=1}^{n} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$	$= \ln n + O(1)$	$\Theta(\log n)$

Summations with general bounds: If summation bounds do not start at 1 and n, you can compute differences. For $1 \le a \le b$

$$\sum_{i=a}^{b} f(i) = \sum_{i=0}^{b} f(i) - \sum_{i=0}^{a-1} f(i).$$

- (Simplified) Master Theorem for Recurrences: This is very useful when dealing with recurrences arising from divide-and-conquer algorithms. Let $a \ge 1, b > 1, c \ge 0$ be constants and let T(n) be the recurrence $T(n) = aT(n/b) + n^c$, defined for $n \ge 1$.
 - **Case 1:** $c < \log_b a$ then T(n) is $\Theta(n^{\log_b a})$. **Case 2:** $c = \log_b a$ then T(n) is $\Theta(n^c \log n)$. **Case 3:** $c > \log_b a$ then T(n) is $\Theta(n^c)$.