
COMP 3711 Design and Analysis of Algorithms
Spring 2015 Midterm Exam

1. Short-Answer Questions (35 pts)

1.1 (10 pts) Arrange the following functions in asymptotic ascending order (e.g., n, n2, n3)

(a) n; (b) n2/ log3 n; (c)
√
n · log4 n; (d) 10100; (e) log n.

1.2 (3 pts) When the input array is already sorted, insertion sort takes O(n) time, which
breaks the Ω(n log n) sorting lower bound. Is this a contradiction? Why or why not?

1.3 (6 pts) What is the fastest known algorithm for sorting an array of n elements for
each of these cases (give both the algorithm and the corresponding running time):

(a) when the elements are all 0’s and 1’s;

(b) when the elements are integers in the range from 0 to n3;

(c) when the elements are real numbers.

1.4 (16 pts) Solve the following recurrences. A correct answer gives you full credits;
otherwise, showing the steps may gain you partial credits. Please give the answer
using the Θ() notation. You may assume that n is a power of a for any constant
a > 1 for your convenience. You may use the Master theorem (provided in the last
page) whenever applicable.

(a) T (1) = 1, and for all n ≥ 2, T (n) = T (n− 1) + 2n.

(b) T (1) = 1, and for all n ≥ 2, T (n) = 4T (n/3) + n.

(c) T (1) = 1, and for all n ≥ 2, T (n) = 2T (n/2) +
√
n.

(d) T (1) = 1, and for all n ≥ 2, T (n) = T (n− 1) + 1
n .

2. Rotated sorted array (20 pts)

Suppose you are given a sorted array A of n distinct numbers that has been rotated k
steps, for some unknown integer k between 1 and n − 1. That is, A[1..k] is sorted in
increasing order, and A[k + 1..n] is also sorted in increasing order, and A[n] < A[1]. The
following array A is an example of n = 16 elements with k = 10.

A = [9, 13, 16, 18, 19, 23, 28, 31, 37, 42, 0, 1, 2, 5, 7, 8].

(a) (15 pts) Design an O(log n)-time algorithm to find the value of k.

(b) (5 pts) Design an O(log n)-time algorithm that for any given x, finds x in the array,
or reports that it does not exist. [You may do part (b) assuming you have solved
part (a), even if you can’t.]

3. Max-Heap (10 pts)

Given an array as follows, show the content of the array after we have run Build-Max-Heap

on it.

2 15 764 3 108 9

1



4. Sorting strings (10 pts)

Recall that in Written Assignment 2, you gave an O(n)-time algorithm for sorting a
collection of variable-length strings with a total of n characters. One student offered the
following solution: First pad ‘\0’ (the character with ASCII code 0) to the right of each
string so that all strings have equal length, and then run radix sort on all strings. What’s
the worst-case running time of this algorithm? Give an input on which this running time
is attained.

5. Binary search tree (10 pts)

The following figure shows the rotation of the AVL-tree for the “left-left” case. Suppose
each node in the AVL-tree has a left pointer, a right pointer, as well as an extra size

field that stores its subtree size (so as to support rank queries). Recall that the subtree
size of a node x is the number of nodes below x, including x itself. Given the pointers
to nodes A,B, and P (assuming A is the left child of P ), write pseudocode to implement
this rotation, i.e., how the left, right, size fields are updated for all the affected nodes.

P

A

B

P

B

A

6. Lazy hashing (15 pts)

Suppose you want to implement a hash table but are too lazy to implement either chaining
or open addressing. So you decide to just use the following simple strategy: To insert an
element x, you store it at position A[h(x)]; if A[h(x)] is already occupied, you just throw
x away. Suppose you insert a total of n elements into a hash table of size n. Do the
following analyses of this lazy strategy under the uniform hashing assumption (derive the
exact expressions in terms of n, not just asymptotic results):

(a) What’s the probability that the i-th inserted element is thrown away? [Hint: First
compute the probability that it is not thrown away.]

(b) What’s the expected number of elements thrown away in total?

2


