
COMP 3711 Design and Analysis of Algorithms
Fall 2015 Midterm Exam Solution

Question 1: 1.1 101010 , log9 n, n, n log n, n1.1/ log n

1.2 (1) Insertion sort is better if the input is already sorted or almost sorted.

(2) Θ(1) extra space is available (Insertion sort uses Θ(1) working space, quicksort
uses expected Θ(log n) working space).

(3) The input size is very small, insertion sort is better.

1.3 Show that there exist at least one input such that the algorithm runs in Ω(n log n).

1.4 (a) Θ(log n), (b) Θ(n2), (c) Θ(n log n), (d) Θ(n)

Question 2: - Recursively divide the problem into two equal size subproblems, until the problem
size is 1.

- Each subproblem returns the index pair (i, j) of the current subproblem. Base
case can be solved trivially.

- For each subproblem, find the max element p[rmax] of the right subarray and the
min element p[lmin] of the left subarray by linear scan. Then, compare it’s left
subproblem result, right subproblem result and p[rmax] − p[lmin], and return the
corresponding index pair (i, j) that makes max amount of money.

- If the result index pair (i, j) of the original input gives p(j) − p(i) ≤ 0, then the
solution is ”no way”. Otherwise, the index i, j is the solution.

FindMaxMoney(array p, int s, int e)

if s = e then (curri, currj) = (s, s); // O(1)

else
m = b s+e

2 c;
(li, lj) = FindMaxMoney(p, s,m); // T (bn2 c)
(ri, rj) = FindMaxMoney(p,m+ 1, e); // T (dn2 e)
rmax = index of maxm+1≤i≤e{p[i]}; // O(n)
lmin = index of mins≤i≤m{p[i]}; // O(n)
(curri, currj) = indices of max(p[lj ]− p[li], p[rj ]− p[ri], p[rmax]− p[lmin]); // O(1)

end
return [curri, currj ];

Call (i,j) = FindMaxMoney(p, 1, n). If (p(j) − p(i) ≤ 0) output ”no way”, else output

(i, j).

Running time: T (1) = 1, T (n) = 2T (n/2) + n. So, T (n) = O(n log n).

Alternative solution (O(n)): Create array B[1..n − 1], where B[i] = A[i + 1] − A[i]
for 1 ≤ i ≤ n − 1. Run O(n) time MCS algorithm on B to obtain (i, j), then return
(i, j + 1).

1



Question 3: Let bi denotes the number of hats that are better than or equal to the hat of customer
i. Let Xi = 1 if the i-th customer get back his own hat or a better one, otherwise
Xi = 0. We have E(Xi) = Pr(Xi = 1) = bi

n
.

E(X) = E

(
n∑

i=1

Xi

)
=

n∑
i=1

E(Xi) =
n∑

i=1

bi
n

=
n∑

i=1

i

n
=

1

n

n∑
i=1

i =
1

n

n(n + 1)

2
=

n + 1

2

Question 4:

10 9 8 7 6 5 4 3 2 1

9 7 8 3 6 5 4 1 2

8 7 5 3 6 2 4 1

7 6 5 3 1 2 4

6 4 5 3 1 2

5 4 2 3 1

4 3 2 1

3 1 2

2 1

1

Question 5: For each day i, stop at the furthest camping site, i.e. stop at the largest xj such that
xj minus the start location of day i is at most d.

camping sites = {}; curr loc = x0;

for i = 1 to n do
if xi − curr loc > d then

curr loc = xi−1; camping sites.insert(xi−1);
end

end
return camping sites

Running time: One linear scan to the n camping site, each iteration runs in O(1).
So, the algorithm runs in O(n).
Correctness: Let X be the solution returned by this greedy algorithm, and let Y
be an optimal solution. Consider the first camping site where Y different from X.
Suppose the camping site in X is located at x and the one in Y is located at y. By
the greedy choice, we must have x > y. Now move y to x in Y . The resulting Y must
still satisfy the requirement, travel at most d kilometers per day. Repeatedly applying
this transformation will convert Y into X. Thus X is also an optimal solution.

2


