
COMP 3711 Design and Analysis of Algorithms

Spring 2015 Final Exam Solution

Problem 1 (12 pts)

1.1(3 pts) Hash table. (a) O(1). (b) O(1).
1.2(3 pts) A balanced BST such as the AVL Tree. (a) O(log n). (b) O(log n).
1.3(3 pts) A priority queue such as the min-heap. (a) O(1). (b) O(log n). (c) O(log n). (Fibonacci heap is
even better, but it’s not covered.)
1.4(3 + 3 pts) The union-find data structure with a hash table (or a balanced BST) that maps the IP addresses
to nodes in the union-find data structure. (a) O(log n). (b) O(log n).

Problem 2 (15 pts)

Answer 1: Greedy Choose the interval that covers 0 and has largest yi. Then iteratively choose the interval
that overlaps the already covered part with the largest yi, until we reach 1. Naively picking such an interval
takes O(n) time, leading to O(n2) time in total. Below is a more efficient implementation of this greedy idea.

Algorithm 1: Interval-Covering (7 pts)
S = ∅, covered = 0, I = {1, ..n};
sort the intervals by xi such that x1 ≤ x2 ≤ · · · ≤ xn;
i← 1;
while covered ≤ 1 do

starting from the i-th interval, scan to find the last j such that xj ≤ covered;
from the i-th interval to the j-th interval, find k such that yk is maximized;
S ← S ∪ {k}, covered← yk;
i← j + 1;

In the above algorithm, sorting takes O(n log n) time and the greedy loop takes O(n) time because every
interval is only examined once. So total running time is O(n log n). (3 pts)

Correctness proof. Let G be the solution returned by this greedy algorithm, and O be an optimal solution.
Consider the first interval where O is different from G. Suppose the interval chosen by G is [xi, yi] and the one
chosen by O is [xj , yj ]. We must have both xi ≤ covered and xj ≤ covered, and by the greedy choice, yi ≥ yj .
Now we modify O by changing [xj , yj ] with [xi, yi]. This must still cover the interval [0, 1]. Repeatedly applying
this transformation will convert O into G. Thus G is also an optimal solution. (5 pts)

Answer 2: Consider each interval as a vertex of a graph. Build an edge (u, v) if xu < xv ≤ yu < yv. This is a
DAG, and the problem reduces to finding its shortest path, which takes O(n2) time. (13 pts)

Problem 3 (13 pts)

Answer 1 For a given string s, denote by S[i, j] the length of shortest symmetric supersequence of s[i..j]. We
have the following recurrence relation (with base case S[i, i] = 1 and S[i, i− 1] = 0): (9 pts)

S[i, j] =
{

S[i + 1, j − 1] + 2, if i < j & s[i] = s[j];
min{S[i, j − 1], S[i + 1, j]}+ 2, if i < j & s[i] 6= s[j].

We can compute all the S[i, j]’s from small intervals to larger intervals. The running time is O(n2). (4 pts)

Answer 2 Run the algorithm in the homework to find the length of longest symmetric subsequence l(sub) and
return 2n− l(sub) as the length of shortest symmetric supersequence. This also takes O(n2) time.

Correctness proof. There is a one-to-one mapping between symmetric subsequences and symmetric superse-
quences. For a given string s, let sub be any symmetric subsequence. We can find a symmetric supersequence
corresponding to sub as follows. Keep all the characters in sub. Then for every remaining character, we add
one to pair it off. We add a total of n− l(sub) extra characters so the total length is 2n− l(sub). Likewise, for
any symmetric supersequence sup, we can find its corresponding symmetric subsequence, by deleting all extra
characters and their matched counterparts.

1



(a) Directed graph (5 pts) (b) DFS-tree (5 pts) (c) BFS-tree (5 pts)

Problem 4 (15 pts)

Problem 5 (15 pts)

(a)(3 pts) A counter example: a undirected triangle with weighted edges, w(a, b) = 1, w(a, c) = 2, w(b, c) = 3.
The MST is {(a, b), (a, c)} and edge (a, c) is not the minimum-weight edge of cut ({a}, {b, c}).
(b)(12 pts) Correctness proof. For any edge e in T . Removing e breaks T into two parts S and V − S. We
claim that e is the minimum-weight edge crossing the cut (S, V − S). Indeed, if there is another e′ crossing the
cut, we can replace e with e′ to improve the MST, which contradicts with the fact that T is an MST.

Problem 6 (15 pts)

We have the following recurrence (6 pts),

d(s, v) = maxu,(u,v)∈E{d(s, u) + w(u, v)}+ w(v)

The algorithm is very similar to the one in the lecture notes. The running time is O(V + E).

Algorithm 2: Maximum-weighted-Path-in-DAG (9 pts)
Topologically sort the vertices in V ;
for each vertex v ∈ V do

v.d← −∞, v.p← nil;
s.d← w(s);
for each vertex u in topological order do

for each vertex v ∈ Adj(u) do
if v.d < u.d + w(u, v) + w(v) then

v.d← u.d + w(u, v) + w(v), v.p← u;

while t 6= s do
print t;
t← t.p;

print s;

Problem 7 (15 pts)

(a)(2 pts) The shortest path from s to t is (s, b, t). Pr(s→ b→ t) = 1
2 .

(b)(4 pts) There are 3 possible paths: Pr(s → a → c → d → t) = 1
4 , Pr(s → a → b → t) = 1

4 , Pr(s → b →
t) = 1

2 . So E[length of the path chosen randomly] =
∑

p Pr(p) · length(p) = 11
4 .

(c)(2 pts) On G2 the probability of routing along the shortest path is 1
4 .

(7 pts) Let X(e) be the number of times edge e appears on the randomly chosen path. By linearity
of expectation, the expected total length is

∑
e X(e). For (s, a) and (s, b), each of them appears once with

probability 1/2 and 0 times with probability 1/2, so E[X(s, a)] = E[X(s, b)] = 1/2. Because the random path
exits from a or b with equal probability, we also have E[X(a, c)] = E[X(c, d)] = E[X(d, t)] = E[X(b, t)] = 1/2.
It only remains to compute E[X(a, b)]. This is the same as the waiting time problem with success (i.e., exit
from the loop) probability p = 1/2, except that we do not count the success coin. So E[(a, b)] = 1/p − 1 = 1.
Summing up all these expectations gives that the expected total length of the randomly chosen path is 4.

2


