COMP 3711 Design and Analysis of Algorithms

Spring 2015 Final Exam Solution

Problem 1 (12 pts)

1.1(3 pts) Hash table. (a) O(1). (b) O(1).

1.2(3 pts) A balanced BST such as the AVL Tree. (a) $O(\log n)$. (b) $O(\log n)$.

1.3(3 pts) A priority queue such as the min-heap. (a) O(1). (b) $O(\log n)$. (c) $O(\log n)$. (Fibonacci heap is even better, but it's not covered.)

1.4(3 + 3 pts) The union-find data structure with a hash table (or a balanced BST) that maps the IP addresses to nodes in the union-find data structure. (a) $O(\log n)$. (b) $O(\log n)$.

Problem 2 (15 pts)

Answer 1: Greedy Choose the interval that covers 0 and has largest y_i . Then iteratively choose the interval that overlaps the already covered part with the largest y_i , until we reach 1. Naively picking such an interval takes O(n) time, leading to $O(n^2)$ time in total. Below is a more efficient implementation of this greedy idea.

Algorithm 1: Interval-Covering (7 pts)

In the above algorithm, sorting takes $O(n \log n)$ time and the greedy loop takes O(n) time because every interval is only examined once. So total running time is $O(n \log n)$. (3 pts)

Correctness proof. Let G be the solution returned by this greedy algorithm, and O be an optimal solution. Consider the first interval where O is different from G. Suppose the interval chosen by G is $[x_i, y_i]$ and the one chosen by O is $[x_j, y_j]$. We must have both $x_i \leq covered$ and $x_j \leq covered$, and by the greedy choice, $y_i \geq y_j$. Now we modify O by changing $[x_j, y_j]$ with $[x_i, y_i]$. This must still cover the interval [0, 1]. Repeatedly applying this transformation will convert O into G. Thus G is also an optimal solution. (5 pts)

Answer 2: Consider each interval as a vertex of a graph. Build an edge (u, v) if $x_u < x_v \le y_u < y_v$. This is a DAG, and the problem reduces to finding its shortest path, which takes $O(n^2)$ time. (13 pts)

Problem 3 (13 pts)

Answer 1 For a given string s, denote by S[i, j] the length of shortest symmetric supersequence of s[i..j]. We have the following recurrence relation (with base case S[i, i] = 1 and S[i, i-1] = 0): (9 pts)

$$S[i,j] = \begin{cases} S[i+1,j-1]+2, & \text{if } i < j \& s[i] = s[j];\\ min\{S[i,j-1], S[i+1,j]\}+2, & \text{if } i < j \& s[i] \neq s[j]. \end{cases}$$

We can compute all the S[i, j]'s from small intervals to larger intervals. The running time is $O(n^2)$. (4 pts)

Answer 2 Run the algorithm in the homework to find the length of longest symmetric subsequence l(sub) and return 2n - l(sub) as the length of shortest symmetric supersequence. This also takes $O(n^2)$ time.

Correctness proof. There is a one-to-one mapping between symmetric subsequences and symmetric supersequences. For a given string s, let sub be any symmetric subsequence. We can find a symmetric supersequence corresponding to sub as follows. Keep all the characters in sub. Then for every remaining character, we add one to pair it off. We add a total of n - l(sub) extra characters so the total length is 2n - l(sub). Likewise, for any symmetric supersequence sup, we can find its corresponding symmetric subsequence, by deleting all extra characters and their matched counterparts.

Problem 4 (15 pts)

Problem 5 (15 pts)

(a)(3 pts) A counter example: a undirected triangle with weighted edges, w(a, b) = 1, w(a, c) = 2, w(b, c) = 3. The MST is $\{(a, b), (a, c)\}$ and edge (a, c) is not the minimum-weight edge of cut $(\{a\}, \{b, c\})$. (b)(12 pts) Correctness proof. For any edge e in T. Removing e breaks T into two parts S and V - S. We claim that e is the minimum-weight edge crossing the cut (S, V - S). Indeed, if there is another e' crossing the

cut, we can replace e with e' to improve the MST, which contradicts with the fact that T is an MST.

Problem 6 (15 pts)

We have the following recurrence (6 pts),

$$d(s,v) = \max_{u,(u,v)\in E} \{ d(s,u) + w(u,v) \} + w(v)$$

The algorithm is very similar to the one in the lecture notes. The running time is O(V + E).

Algorithm 2: Maximum-weighted-Path-in-DAG (9 pts)

Problem 7 (15 pts)

(a)(2 pts) The shortest path from s to t is (s, b, t). $\Pr(s \to b \to t) = \frac{1}{2}$. (b)(4 pts) There are 3 possible paths: $\Pr(s \to a \to c \to d \to t) = \frac{1}{4}$, $\Pr(s \to a \to b \to t) = \frac{1}{4}$, $\Pr(s \to b \to t) = \frac{1}{2}$. So $E[\text{length of the path chosen randomly}] = \sum_{p} \Pr(p) \cdot length(p) = \frac{11}{4}$. (c)(2 pts) On G_2 the probability of routing along the shortest path is $\frac{1}{4}$.

(7 pts) Let X(e) be the number of times edge e appears on the randomly chosen path. By linearity of expectation, the expected total length is $\sum_{e} X(e)$. For (s, a) and (s, b), each of them appears once with probability 1/2 and 0 times with probability 1/2, so E[X(s, a)] = E[X(s, b)] = 1/2. Because the random path exits from a or b with equal probability, we also have E[X(a, c)] = E[X(c, d)] = E[X(d, t)] = E[X(b, t)] = 1/2. It only remains to compute E[X(a, b)]. This is the same as the waiting time problem with success (i.e., exit from the loop) probability p = 1/2, except that we do not count the success coin. So E[(a, b)] = 1/p - 1 = 1. Summing up all these expectations gives that the expected total length of the randomly chosen path is 4.