
COMP 3711 Design and Analysis of Algorithms
Fall 2015 Final Exam Solutions

1.
case 1 2 3 4 5 6 7 8

Faster B A U U U A B A

2. (1) a, (2) b, (3) d, (4) c, (5) d

3.

fe

c

a

n5

b d

n4 n3

n2

n1

0 1

0 0

0

0

1 1

1

1

Huffman code:

a = 10

b = 00

c = 110

d = 01

e = 1110

f = 1111

4.
b c

d

f

g
1

2
3

107

6

4

5

e

7
2

6

a

c

d

f

g
1

2
3

107

6

4

5

e

7
2

6

a

b c

f

g
1

2
3

107

6

4

5

e

7
2

6

a

b

d

f

g
1

2
3

107

6

4

5

e

7
2

6

a

b

d

c

g
1

2
3

107

6

4

5

e

7
2

6

a

b

d

c

f

1

2
3

107

6

4

5

e

7
2

6

a

b

d

c

f

g
1

2
3

107

6

4

5 7
2

6

a

b

d

c

f

g

e

5. Structure: For 1 ≤ i ≤ n, define c[i] be the minimum subsequence sum of A[1..i] and
A[i] must be included in the subsequence. min{c[n − 2], c[n − 1], c[n]} is the optimal
value of the original problem.
Recurrence:
Base case: c[1], c[2] and c[3] are solved directly.
Recursive case (for i > 3): c[i] = A[i] + min{c[i− 3], c[i− 2], c[i− 1]}
Bottom-up computation: Compute c[i] in increasing order of i.
Construction of optimal solution: For 1 ≤ i ≤ n, define d[i] = j such that c[i] is
obtained from A[i]+c[j] and d[i] = 0 if A[i] is the leftmost element in the subsequence.

1

Output the subsequence by the following procedure:
OutputSubsequence(A, d, i)
1. while i > 0 {
2. output A[i]
3. i = d[i]
4. }
Initial call: OutputSubsequence(A, d, n′), where c[n′] = min{c[n− 2], c[n− 1], c[n]}.
Running time analyze: There are O(n) subproblems and each subproblem can be
solved in O(1) time, so the total running time is O(n).

6. Structure: For 1 ≤ i ≤ n, 1 ≤ j ≤ n, define c[i, j] be the DTW of x[1..i] and y[1..j].
c[n, n] is the optimal value of the original problem.
Recurrence:
Base case: c[1, j] =

∑j
k=1 |x[1]− y[k]|, c[i, 1] =

∑k
i=1 |x[k]− y[1]| for 1 ≤ i, j ≤ n

Recursive case: c[i, j] = |x[i]− y[j]|+ min{c[i− 1, j], c[i− 1, j − 1], c[i, j − 1]}.
Bottom-up computation: Compute c[i, j] in increasing order of i and j.
Running time analysis: There are O(n2) subproblems and each subproblem can be
solved in O(1) time, so the total running time is O(n2).

7. Run the topological sorting algorithm on the graph with the following change: In each
iteration, if there is one vertex with in-degree 0, output that vertex; if there is zero or
more than one vertex with in-degree 0, output “no Hamiltonian path”. Obviously, it
runs in O(V + E) time.

Alternative solution: Find the longest path and check if it visits all vertices.

8. Create a source s and add the directed edge (s, u) and (s, w). Each undirected edge in
G becomes two anti-parallel edges. Set the target to be t = v, and each vertex (except
s and v) has capacity 1. Find the max flow of this flow network with source s and
target t = v by the technique in WA4. If the max flow is 2, there exists a simple path
from u to w that passes through v. The Ford-Fulkerson algorithm to find the max
flow of this flow network, the algorithm will stop in at most 2 iterations. So the total
running time is O(V + E).

9. Consider the points in decreasing x-coordinates. Let Xi = 1 if the i-th point is on the
skyline, and Xi = 0 otherwise. Observe that Xi = 1 iff the i-th point is the highest in
the first i points (same as the hiring problem), so Pr[Xi = 1] = 1/i. Then the expected
number of skyline points is

∑n
i=1

1
i

= Θ(log n).

2

