1.
	
	TA(n) =
	TB(n) =
	Faster

	Case 1
	Θ(n2)
	Θ()
	B

	Case 2
	Ο(n3)
	Ω()
	A

	Case 3
	Θ(logn)
	Ο(loglogn)
	B

	Case 4
	Θ(log3n)
	Θ()
	A

	Case 5
	Ο(n2)
	Ο(n2.31)
	U

	Case 6
	Ω(n2)
	Ο(n2.5)
	U

	Case 7
	Ω(n3)
	Ο(n2.81)
	B

	Case 8
	Θ()
	Θ()
	A

2.(a)
find-k(A[p..r])
if r=p+1, RETURN p
mid=(p+r)/2
if A[mid]=0 and A[mid+1]=1, RETURN mid
if A[mid]=0, find-k(A[mid..r])
	else find-k(A[p..mid])

This is similar to binary search: with a constant number of comparisons, we reduce the problem size by half: T(n)=T(n/2)+c T(n) = O(logn)

(b)
i1
while A[i]=0
	i2i
find-k(A[i/2+1..i])

The while loop will stop when it finds a 1. Since each time we double the value of i, the while loop performs logk iterations. The first 1 occurs somewhere between the positions A[i/2+1] and A[i]. To find it, we call find-k(A[i/2+1..i]), which has cost log(k/2)= O(logk). Therefore, the total cost is O(logk).

4.(a) Suppose an MST contains a dangerous edge . We remove e from , which breaks into two trees and . We look at the cycle that has as its longest edge. This cycle must connect to via another path, which must have an edge connecting and , with . We add to . This gives us another spanning tree with weight less than the original MST. This is a contradiction.
(b) Suppose . First delete and all edges with weight greater than from the graph. Then run a BFS or DFS starting from . If the BFS/DFS reaches , answer “yes”, otherwise answer “no”.

5.(a) Sort all files in the decreasing order of their length. Proof of optimality: Consider any order and any two consecutive jobs , . If , then we can swap their order. This swap will increase the cost of by , but will decrease the cost of by , so will decrease the expected cost.
(b) Sort all files according to the ratio . Proof of optimality: Consider any order and any two consecutive jobs , . If , then we swap their order. This swap will increase the cost of by , but will decrease the cost of by . The net increase of the expected cost is thus

6.(a) T(1) = 1,
Base: T(1)=1<21
Hypothesis: T(m) < 2m 1≤m<n

Step:

The recurrence and its solution is similar to the first (i.e., non dynamic programming) solution to the rod-cutting problem

(b)
DP(n)
R[1]=10
for j==2 to n // j is the problem size
R[j] = 5 // n>1
for i == 1 to j-1 do
 	R[j] = R[j] +3· R[i];
return R[n];

[bookmark: _GoBack]The running time is (n-1)+(n-2)+….1= O(n2)

7. Let be the number of node . Define to be the maximum sum achievable for picking nodes from the subtree below (and including) . Then

If any of ’s children or grandchildren doesn’t exist, the corresponding term is 0.
The base case is if is a leaf.
We solve this recurrence following the post-order of the binary tree (from leaves to the root).

image1.wmf
1

,

)

(

1

)

(

1

1

>

+

=

å

-

=

n

i

T

n

T

n

i

oleObject1.bin

image2.wmf
n

n

n

n

n

i

n

T

T

T

i

T

n

T

2

1

2

1

2

1

2

2

...

2

2

1

)

1

(

...

)

2

(

)

1

(

1

)

(

1

)

(

1

2

1

1

1

<

-

=

-

-

=

=

+

+

+

+

<

-

+

+

+

=

+

=

-

-

=

å

oleObject2.bin

