
COMP 3711 Design and Analysis of Algorithms

Fall 2012 Final Exam

1. Quick-Answer Questions (15 pts)

1.1 (6 pts) Please arrange the following functions in asymptotic ascending order (e.g.,
n, n2, n3): (a) n; (b) log n; (c) log log n; (d) log∗ n; (e) 22 logn.

Solution: d, c, b, a, e

1.2 (5 pts) Given n integers in the range 0 to n3, what is the fastest sorting algorithm
(asymptotically) to sort them?

Solution: Use radix sort with base n. The time complexity is for radix sort is
Θ(d(n + k)). Here k = n and d = 4, and the time complexity is Θ(n).

1.3 (4 pts) Put “∀” and “∃” into the following blankets.

The precise meaning of “the problem can be solved in O(n) time” is:

a correct algorithm for the problem, c > 0, n > 0, such that
input of size n, the running time of the algorithm on the input is at most

cn.

Solution: ∃ a correct algorithm for the problem, ∃ c > 0, ∀ n > 0, such that ∀
input of size n, the running time of the algorithm on the input is at most cn.
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2. Longest Path in a Tree (10 pts)

Design an algorithm that, given a binary tree, finds the longest path in the tree. For
example, in the tree below, the longest path is 9-7-4-2-5-8-11. Your algorithm just needs
to output the two endpoints of the path, i.e., 9 and 11 in this example. For full credits,
your algorithm should run in O(n) time, where n is the number of nodes in the tree.

1

2 3

4 5

6 7 8

9 10 11

Solution:

(1) Let d(u) be the length of the longest path from u to one of the leaves below u. This
does not directly solve the original problem, but we can find the length of the longest path
with u as the highest node as follows:

path length(u) =























d(u.left) + d(u.right) + 2 if u.left != null and u.right != null,

d(u.left) + 1 if u.left != null and u.right = null,

d(u.right) + 1 if u.left = null and u.right != null,

0 if u is a leaf.

Then we just find the u with the maximum path length(u).

(2) Recurrence for d(u):

d(u) =























max{d(u.left), d(u.right)} + 1 if u.left != null and u.right != null,

d(u.left) + 1 if u.left != null and u.right = null,

d(u.right) + 1 if u.left = null and u.right != null,

0 if u is a leaf.

(3) We can compute all the d(u)’s from leaves to the root. The order can be obtained by
a post-order traversal of the binary tree. The running time is O(n).

(4) For each u, let c(u) be the child of u that the DP has chosen during the bottom-up
computation of d(u). After we have found the u with the maximum path length(u), we
trace down the two paths starting from u.left and u.right (if they exist) following the c()
array.
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3. Shortest Path on an Chessboard (10 pts)

In the game of chess, the Knight can move two squares horizontally and one square
vertically, or two squares vertically and one square horizontally. The complete move
therefore looks like the letter “L”. You are given two squares on an n × n chessboard.
Design an algorithm to determine the shortest sequence of knight moves from one square
to the other. For full credits, your algorithm should run in O(n2) time.

Solution: We build an undirected graph G = {V,E}, where V consists of n2 nodes
corresponding to the n2 squares in the chessboard. For two nodes vi,j and vp,q, they are
connected by an edge if and only if the Knight can directly move from [i, j] to [p, q]. Then
we just need to find the shortest path from the source square to the destination square.
Since the graph is unweighted, we can use BFS which takes time O(V +E). In this graph,
we have n2 vertices. Each vertex has 8 neighbors so there are at most 8n2 = O(n2) edges.
So the running time is O(n2).
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4. Bottleneck Spanning Tree (10 pts)

A bottleneck spanning tree T of an undirected, weighted graph G is a spanning tree of G
whose largest edge weight is minimum over all spanning trees of G. We say that the value
of the bottleneck spanning tree is the weight of the maximum-weight edge in T . Give
a linear-time algorithm that, given a graph G and an integer b, determines whether the
value of the bottleneck spanning tree is at most b.

Solution: Obtain a new graph G′ from G by linear search on the edge set of G and
remove all the edges with weight larger than b. Apply BFS or DFS on G′. If the re-
sult is one connected component, return YES. Otherwise return NO. The running time is
obviously O(|V |+ |E|).

One more question: How do you find a bottleneck spanning tree with the minimum
value in O(E log V ) time (assuming the graph is connected)?

Solution: Sort all edges in increasing order of their weights (O(E logE) time). Then
delete all the edges, and we have V singleton vertices. Add the edges back one by one,
and we stop as soon as all vertices are connected. This can be checked by using the disjoint
set data structure. Note this is the same as in Kruskal’s algorithm, except that we keep
all edges, even if an edge creates a cycle. This step takes O(E log V ) time. Finally, we
find any spanning tree of these edges. We can just run BFS and return the BFS-tree (or
run DFS and return the DFS-tree).
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5. Non-adjacent Elements in an Array (15 pts)

Given an array of n positive numbers A[1], A[2], . . . , A[n]. Our goal is to pick out a
subset of non-adjacent elements whose sum is maximized. For example, if the array is
(1, 8, 6, 3, 6), then the elements chosen should be A[2] and A[5], whose sum is 14.

(a) (5 pts) Give an example to show that the following algorithm does not always find a
subset of non-adjacent elements whose sum is maximized.

Start with S equal to the empty set

While some elements remain in A

Pick the largest A[i]

Add A[i] to S

Mark A[i] and its neighbors as deleted

Endwhile

Return S

Solution: (1, 4, 6, 4). The above algorithm gives the result is (1, 6) with the sum is
7. The optimal solution should be (4, 4) with the sum is 8.
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(b) (10 pts) Give an algorithm based on dynamic programming that finds a subset of
non-adjacent elements in A whose sum is maximized. For full credits, the running
time should be O(n). All elements in A are positive.

Solution:

Step1: Space of subproblem

For 0 ≤ i ≤ n, define d[i] be the maximum sum of the subset of non-adjacent elements
from the first i elements in A. d[n] is the optimal value for our original problem.

Step2: Recursive formulation

Base cases (i = 0, i = 1): d[0] = 0, d[1] = A[1].
Recursive cases (i > 1): d[i] = max(d[i− 1], d[i − 2] +A[i])

Step3: Bottom-up computation

For 0 ≤ i ≤ n, we solve the subproblems d[i] in increasing order of i, i.e. from i = 0 to
i = n.

Step4: Construction optimal solution

For 1 ≤ i ≤ n, define s[i] = 0 if d[i−1] > d[i−2]+A[i], and s[i] = 1 if d[i−1] ≤ d[i−2]+A[i].
Then we use the following procedure PrintSubset to output the subset after d[n] is com-
puted.
1. PrintSubset(s,i)

2. if (i > 0)

3. if (s[i] == 1)

4. output A[i];

5. PrintSubset(s,i-2);

6. else

7. PrintSubset(s,i-1);

8. Endif

9. Endif

The initial call is PrintSubset(s,n). The running time of this algorithm is obviously
runs in O(n).
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6. Longest Balanced Subsequence (15 pts)

A string of parentheses is said to be balanced if the left- and right-parentheses in the string
can be paired off properly. For example, the strings (()) and ()() are both balanced, while
the string (()))( is not. Given a string S of length n consisting of parentheses, design an
algorithm to find the longest subsequence of S that is balanced. For this problem, you
will gain full marks as long as your algorithm is correct and runs in polynomial time.

Solution by Dynamic Programming

Step1: Space of subproblem

For 1 ≤ i ≤ n, 1 ≤ j ≤ n, define D[i, j] be the longest balanced subsequence of the
substring S[i..j].

Step2: Recursive formulation

Base cases (i ≥ j): D[i, j] = 0.

Recursive cases (1 ≤ i < j ≤ n):

D[i, j] = max























[1]D[i + 1, j − 1] + 2 S[i] =′ (′ and S[j] =′)′

[2] max
i<k<j

{D[i, k] +D[k + 1, j]}

[3]D[i + 1, j]

[4]D[i, j − 1]

Step3: Bottom-up computation

Just like Matrix Multiplication Problem, we compute the D[i, j] in increasing order of
|j − i|.

Step4: Construction optimal solution

For 1 ≤ i ≤ n, 1 ≤ j ≤ n, define c[i, j] to record which case we choose to get the solution
for the subproblem. Then we can start from c[1, n] and recursively construct the optimal
solution.

7



7. Greedy Algorithm (15 + 10 pts)

A teacher assigns a homework with n questions at the beginning of the first day of class.
Each homework question carries a certain number of marks, if submitted on or before a
specified deadline; otherwise it earns no marks. Each homework question takes exactly
one day to complete. Your task is to find a schedule to finish the homework questions so
as to maximize marks earned.

For instance, suppose there are seven questions with deadlines and marks as follows:

Problem 1 2 3 4 5 6 7

Deadline 1 1 3 3 2 2 6
Marks 6 7 2 1 4 5 1

Then the maximum number of marks one can obtain is 15, which can be achieved by
completing the problems in the order of 2, 6, 3, 1, 7, 5, 4. Note that there are also other
schedules that obtain the same marks.

For this problem, you will gain full marks as long as your algorithm is correct and runs
in polynomial time. You get 10 bonus marks if your algorithm runs in time O(n log n).

Solution: Let S[i] be the question we do on day i. Initially, it’s all empty.

step 1 Sort all questions by the descending order of marks. Denote these questions (after
sorting) by p1, . . . , pn, and their corresponding deadlines and marks by d1, . . . , dn
and m1, . . . ,mn. We have m1 ≥ m2 ≥ · · · ≥ mn.

step 2 For each i = 1 to n:
We try to do pi as late as possible but on or before its deadline di. More precisely,
we scan the array S[.] from S[di] to d[1] to find the first empty position, say ei, and
then set S[ei] = i. If all positions are occupied, we put it in the last available day
(so we will not earn marks for this question).

Correctness proof: We denote our schedule by S[.] and the optimal schedule by OPT [.].
We look at p1, p2, . . . in order, and find the first pi that S and OPT do on different days.
Suppose S[a] = i, OPT [b] = i. Note that OPT [a] must store some j such that mj ≤ mi.
Now, we swap OPT [a] and OPT [b] in the optimal solution. There are a few cases:

(a) If a > di, that means greedy does not earn its marks. Then OPT cannot earn its
marks, either. So we have di < b < a. Thus this swap does not make OPT worse.

(b) If a < di, that means greedy has earned pi. If OPT has also earned pi, then we must
have b < a. Then this swap will not make OPT worse. If OPT has not earned pi,
then this swap cannot make OPT worse, either, since OPT will earn pi in exchange
for pj which as lower (or the same) marks.

We can repeatedly apply the above transformation until OPT and S are the same.

Running time: Step 1 takes O(n log n) time. Step 2 has n iterations, each takes O(n)
time to find an empty slot. So the total running time is O(n2).

Bonus marks: The bottleneck of the above algorithm is to find the latest empty slot
before the deadline. To speed up this step, we insert all the empty slots in an AVL-tree.
Given a deadline, finding the latest empty slot before the deadline in the AVL-tree takes
O(log n) time. Once a slot is taken, we delete it from the AVL-tree. In total we do n

insertions, n finds and n deletions. The total time is thus O(n log n).
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8. Huffman Coding (10 pts)

What is the optimal Huffman code for the following set of frequencies, based on the first
8 Fibonacci numbers?

a b c d e f g h

1 1 2 3 5 8 13 21

Can you generalize your answer to find the optimal code when the frequencies are the
first n Fibonacci numbers? Recall that the Fibonacci numbers are defined inductively as
f1 = f2 = 1, fn = fn−2 + fn−1 for n ≥ 3. You need to justify your answer.

Solution: An optimal Huffman code for the given alphabet is:
a:0000000
b:0000001
c:000001
d:00001
e:0001
f:001
g:01
h:1

When the frequencies are the first n Fibonacci numbers (li denotes the letter with fre-
quency fi):
ln : 0n−1

li : 0
i−11 for i ∈ {1, ..., n − 1}

In building the Huffman tree, two trees with the smallest frequencies will always be merged
first. Since fk+2 >

∑k
i=1 fi (to be proved by induction) and fk+2 > fk+1 (more obvious),

we can see that the two trees with letters {li|i ∈ {1, ..., k}} and {lk+1} will always be
merged before {lk+2}, and the result is a “linear” tree structure that gives the above codes.

Proof of fk+2 >
∑k

i=1 fi by induction:
Base case: f3 > f1
Assume fk+1 >

∑k−1
i=1 fi holds. Then fk+2 = fk+1 + fk >

∑k−1
i=1 fi + fk =

∑k
i=1 fi. �
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