
COMP 3711
Midterm review



Course Intended Learning Outcomes

1. Describe fundamental concepts and techniques for determining the 
asymptotic behavior of real-valued functions defined in natural numbers.

2. Explain recurrence equations and solve common recurrences using a 
variety of techniques.

3. Analyze an algorithm described in plain language or some form of 
pseudocode in terms of its time (or space) efficiency as a function of the 
size of a problem instance.

4. Explain how various data structures, including trees, heaps and disjoint 
set structures, influence the time efficiency of algorithms.

5. Apply general algorithmic design and analysis techniques to solving 
problems, including greedy, divide-and-conquer and dynamic 
programming.

6. Identify randomization in algorithms and analyze basic randomized 
algorithms such as randomized quicksort and selection.



1. Describe fundamental concepts 
and techniques for determining the 
asymptotic behavior of real-valued 
functions defined in natural 
numbers.



• Definitions of O, Ω, Θ

• Given a function f(n), determine f(n) = Θ( ? )
• ignore lower order terms

• ignore the constant coefficient of the most significant term (what’s a constant?)

• Given two functions f(n), g(n), determine whether f(n) = O(g(n)), f(n)=
Ω(g(n)), or f(n) = Θ(g(n))
• Formal definition

• Quick rules: logc n < nc < cn

• How about functions involving two parameters, like n and k?
• Two such functions may not always be comparable.

• Common summations (see background sheet)



2. Explain recurrence equations 
and solve common recurrences 
using a variety of techniques.



• Recurrences naturally arise in
• Analysis of divide-and-conquer algorithms

• Induction proofs

• Recursion tree method

• Master theorem



3. Analyze an algorithm described in 
plain language or some form of 
pseudocode in terms of its time (or 
space) efficiency as a function of the 
size of a problem instance.



• Default: Worst-case
• What does it mean that the worst-case running time of an algorithm is 

O(n log n), Ω(n log n), or Θ(n log n)?

• Others: expected case vs average case

• Simple analysis
• Single/double loops: insertion sort, counting sort

• Iterative algorithms: radix sort

• Divide and conquer algorithms: Use recurrence



4. Explain how various data 
structures, including trees, heaps and 
disjoint set structures, influence the 
time efficiency of algorithms.



• List, array, stack, queue

• Priority queue, heap
• Heapify: O(log n)

• Build-heap: O(n)

• Extract-Min / Insertion / Decrease-Key / Increase-key: O(log n)



5. Apply general algorithmic design 
and analysis techniques to solving 
problems, including greedy, divide-and-
conquer and dynamic programming.



• Divide into two halves, recursively solve both, then combine
• Mergesort

• Counting inversions

• Maximum contiguous subarray

• Divide into two halves, recursively solve one
• Binary search

• Local minimum (homework question)

• Divide into two halves, recursively solve more than two subproblems
• Integer multiplication

• Need to know how to analyze such an algorithm

• Will not ask you to design such an algorithm on the exam
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Greedy Algorithms

• General idea: make the choice that looks best now without 
thinking too much about the future

• Sometimes it produces the optimal solution
• Examples

• Interval scheduling
• Interval partitioning
• Fractional Knapsack
• Huffman coding (correctness proof not required)
• Many graph algorithms  (later)

• The algorithms are usually very simple 
• But need to prove correctness!



Solution format

• The algorithm (language and/or pseudo code)

• Correctness proof (no fixed technique, the following is the most 
common one)
• Let G be the greedy solution, O the optimal solution

• Find one (usually the first or the last) difference between G and O.

• Make O more similar to G by removing that difference, while making sure 
that the quality of O does not decrease (it can’t increase either since O is 
already optimal).

• Repeatedly applying the above transformations until G and O are the same

• Running time (usually easy)
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6. Identify randomization in 
algorithms and analyze basic 
randomized algorithms such as 
randomized quicksort and selection.



• Basic probability theory
• Probability distribution, expectation, independence, 

• Linearity of expectation

• Expected running-time for randomized algorithms
• Expectation is only taken over the internal random choices, input can still be 

the worst

• The indicator random variable technique
• The hiring problem, card guessing, waiting time, birthday paradox, coupon 

collector

• Analysis of quicksort 

• Analysis of randomized selection

• Analysis of bucket sort (average-case analysis)

• How to generate a random permutation



Other issues
• Ω(n log n) sorting lower bound

• Understand what is a comparison-based algorithm

• The decision-tree model

• The lower bound proof

• NOT required:
• The O(n)-time algorithm for maximum contiguous subarray

• Matrix multiplication

• Correctness proof of Huffman coding



About the Midterm Exam

• The midterm is on: 22-Oct (Thu) 19:00-21:00 in CTY G009A+B and 010

• A makeup session is scheduled at 17:00-19:00 in CYT G009B

• Send me an email if you need to take the makeup session

• Coverage: Everything from the beginning to greedy algorithms.

• It will be a closed-book exam, but the math background sheet will be 
provided.

• You are recommended to use pencils (so that you can easily correct 
possible mistakes)

• Calculators or other electronic means are not allowed (or needed). 
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Rotated sorted array

• Suppose  you are  given a sorted  array  A of n distinct  numbers  that 
has been rotated  k steps,  for some unknown  integer  k between  1 
and  n − 1.   That is, A[1..k] is sorted  in increasing  order,  and A[k + 
1..n] is also sorted  in increasing  order,  and A[n] < A[1]. The following 
array  A is an example of n = 16 elements  with k = 10.

A = [9, 13, 16, 18, 19, 23, 28, 31, 37, 42, 0, 1, 2, 5, 7, 8].

(a)  Design an O(log n)-time  algorithm  to find the value of k.

(b)  Design an O(log n)-time  algorithm  that for any given x, finds x in 
the array, or reports  that it  does not  exist.   [You may  do part  (b)  
assuming  you have  solved part  (a),  even if you can’t.]
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O(log n) algorithm  to find the value of k

Algorithm 1 Find-k(A, p, q)
m ← p+q/2
if   A[m + 1] < A[m] then return  m
if A[m] ≥ A[1] then

return  Find-k(A, m, n)
else return  Find-k(A, 1, m − 1)

end if

The  depth of recursion  is O(log n)  and  it takes  constant  time  for 
each recursion,  so total cost is O(log n).
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O(log n)  algorithm  that finds x

Find-x(A, x)

k ← Find-k(A, 1, n)

If   x ≥ A[1]  then return  BinarySearch(A, 1, k, x)

Else return  BinarySearch(A, k + 1, n, x)

end if
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Interval covering
A company  wants  to  build  cell phone  base  stations to  cover  a highway.   However,  not  every location is 
allowed to build, and the government has designated  a certain  number  of locations.  Depending on how far 
the location is from the highway, its coverage on the highway also varies.   Thus,  this  problem  can  be 
generally  modeled  as follows.  The  highway  can be thought of as the  real  line from 0 to  1, and  each  
location  covers a certain  interval [x, y] ⊆ [0, 1] if a base station  is built  there.  You are given a total  of n such 
intervals  and are guaranteed that all of them  together  cover [0, 1] (otherwise  there  is no solution  to the 
problem).  Design an algorithm  that finds the minimum  number  of intervals that together  cover [0, 1]. 

The figure shows an example where an optimal  solution consists of the 4 shaded intervals  (the optimal  
solution may not be unique).  The intervals are given as two arrays  (x1, . . . , xn) and  (y1 , . . . , yn) where the  i-
th interval  is [xi , yi ].  If you use a greedy algorithm, you must  prove that it is correct.
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Greedy algorithm
Choose the interval  that covers 0 and has largest  yi . Then  iteratively choose the interval that overlaps  the  
already  covered part  with  the  largest  yi , until  we reach  1.  Naively  picking such an interval takes  O(n)  
time,  leading to O(n2 ) time in total.  Below is a more efficient implementation of this greedy idea.

Interval-Covering
S = ∅, covered = 0;
sort the intervals  by xi such that x1 ≤ x2 ≤ · · · ≤ xn ;
i ← 1;
while covered ≤ 1 do

starting from the i-th interval, scan to find the last j such that xj ≤ covered;
from the i-th interval to the j-th interval, find k such that yk is maximized;
S ← S ∪ {k}, covered ← yk ;
i ← j + 1;

In the  above  algorithm, sorting  takes  O(nlogn)  time  and  the  greedy loop takes  O(n)  time  because  every 
interval  is only examined  once.  So total  running  time is O(nlogn). 
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Correctness proof
• Let G be the solution  returned by this greedy algorithm, and O be an optimal  solution. Consider  the first 

interval  where O is different from G.  Suppose the interval  chosen by G is [xi, yi] and the one chosen by O is 
[xj, yj]. We must  have both  xi ≤ covered and xj ≤ covered, and by the greedy choice, yi ≥ yj.

• Now we modify O by changing [xj, yj] with [xi, yi]. This must still cover the interval  [0, 1]. 

• Repeatedly applying this transformation will convert  O into G.  Thus  G is also an optimal  solution. 
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Random routing
• We can model a computer network  as a directed  graph,  where each node is a computer and a directed  

edge (u, v) means that u can send messages to v. Ideally, messages should be routed  along the shortest 
path,  but this information  may not be available since no node has a global view of the  entire  network.   
Thus,  decisions have to be made  by each node locally.  Here we just consider one of the simplest routing  
protocols:  RANDOM , where each node simply randomly  chooses an outgoing link, and forwards the 
message along that link, hoping the message can find its way eventually.

• Consider the graph  G1  below. Suppose we have a message at the source node s intending to reach  
destination t. Using RANDOM, s will forward  the  message to a or b, each with probability 1/2. If b gets it,  it 
will forward  the  message to t in the next  step, as t is its only outgoing  neighbor.  If a gets the message, it 
will choose b or c in the next  step,  each with probability 1/2, and so on so forth.
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Random routing

• On graph G1 , what’s the probability that RANDOM indeed chooses the shortest path  from s to t to route  
the message?

The shortest path  from s to t is (s, b, t). Pr(s → b → t) = 1/2.

• On graph  G1 , what’s the expected  length  (in terms  of the number  of edges) of the path  chosen by 
RANDOM?

There  are 3 possible paths:   Pr(s → a → c → d → t) = 1/4 , Pr(s → a → b → t) = 1/4, Pr(s → b →t) = 1/2 . So 
E[length of the path  chosen randomly] = 41/4 + 31/4 + 21/2
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Random routing

• On graph G2 , what’s the probability that RANDOM indeed chooses the short- est path  from s to t to route  the 
message?

The shortest path  from s to t is (s, b, t). Pr(s → b → t) = 1/4.

• On graph  G2 , what’s the expected  length of the path  chosen by RANDOM?

Let  X(e)  be  the  number  of times  edge e appears  on  the  randomly  chosen  path.    By  linearity of 
expectation, the  expected  total  length is  E[eX(e)].   For  (s,a)  and  (s,b), each  of them  appears  once with 
probability 1/2 and  0 times with  probability 1/2, so E[X(s,a)] = E[X(s,b)] = 1/2.  Because the  random  path exits 
from a or b with equal probability, we also have E[X(a,c)] = E[X(c,d)] = E[X(d,t)] = E[X (b,t)] = 1/2. It  only remains  
to compute  E[X(a,b)].  This  is the  same as the  waiting  time  problem  with  success probability p = 1/2, except  
that we do not  count the  success coin.  So E[(a,b)] = 1/p − 1 = 1. Summing  up all these expectations gives that 
the expected  total  length  of the randomly  chosen path  is 4.
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