
COMP 3711 Design and Analysis of Algorithms
2015 Fall Semester

Solutions to Assignment 4

1. e1 and e2 must always be in the MST, while e3 may not. For the counter example on e3,
simply consider a triangle with three edges. The MST only contains e1 and e2, but not
e3.

Below we prove that e1 and e2 must both belong to the MST. Suppose to the contrary
that e1 = (u, v) is not in the MST T . We add e1 to T . This creates a cycle containing e1.
Let e′ be some other edge on this cycle. Since e1 is the smallest-weight edge in the graph,
we have w(e′) > w(e1). We now remove e′ from T and this breaks the cycle, and turns T
back to a spanning tree. Now we see that the new tree has a smaller total weight, which
contradicts the assumption that T is the MST, and this completes the proof.

Finally, we observe that this proof also works on e2, since the cycle contains at least three
edges, and we can still find an e′ on this cycle such that w(e′) > w(e2). However, this
proof doesn’t work on e3.

2. First we prove the “if” part. Suppose there is a path from u to v and all edges on the
path are cheaper than e. If we add e to this path, we get a cycle on which e is the heaviest
edge. Thus by the cycle property proved in the tutorial, e cannot be in the MST.

Next we prove the “only if” part. Suppose there is no path connecting u and v using only
edges cheaper than e. We will try to find a cut (S, V − S) such that e is the cheapest
edge crossing the cut. Then the cut lemma would imply that e must belong to the MST.
We simply put u into S, as well as all vertices reachable from s using only edges cheaper
than e. The rest of the vertices are then V − S. Clearly, e crosses this cut, and there is
no edge cheaper than e that crosses the cut, since if there were, we would have expanded
S in the first place. This completes the proof.

To use this theorem to check whether e belongs to the MST, we just delete all edges
heavier than e and e itself, and then check whether u and v are still connected, using
either BFS or DFS. This takes time O(V + E) = O(E), since we have E ≥ V − 1 as the
graph is connected.

3. Let d(s, v) be the longest distance from s to v. Then the recurrence is

d(s, v) = max
u,(u,v)∈E

d(s, u) + w(v).

Then the algorithm will be very similar to the one in the lecture notes:

1 topologically sort the vertices of G
2 for each vertex v ∈ V
3 v.d← −∞, v.p← nil
4 s.d← 0
5 for each vertex u in topological order

6 for each vertex v ∈ Adj[u]
7 if v.d < u.d + w(v) then

8 v.d← u.d + w(v), v.p← u
9 v ← t
10 while v 6= s do

11 print v

12 v ← v.p
13 print s

The running time of the algorithm is O(V + E).

4. For each vertex v with capacity c, we can split it into two vertices v′ and v′′ with no
capacity, but add an edge between from v′ to v′′ with capacity c. All the incoming edges
to v will now go into v′, while all outgoing edges from v will leave from v′′. An example
is shown below:

c
cv v′ v′′

It is obvious that this preserves the maximum flow in the original network. Also, for each
vertex in the original network, we introduce one more vertex and one more edge, so the
total number of vertices is at most V + V = O(V), and the total number of edges is at
most E + V = O(E).

To solve the escape problem, we create a source vertex s and add an edge from s to each of
the m starting points. For every two neighboring vertices, we add two antiparallel edges
(which then can be removed using the techinque in the lecture slides). Finally, we add
a target vertex t and add an edge from each vertex on the boundary to t. There is no
capacity on the edges, but each vertex has a capacity of 1. If this network’s maximum
flow has value m, then there is an escape plan; otherwise the answer is no. The running
time is O(E|f∗|) = O(Em) = O(n2m).

