
COMP 3711 Design and Analysis of Algorithms
Fall 2015 Assignment 4

1. Let G be a connected undirected graph with weights on the edges. Assume that all the edge
weights are distinct. Let ei be the edge with the i-th smallest weight. Does the MST have to
contain e1? How about e2 and e3? If yes, give a proof; if no, give a counter example. You must
prove your results from first principles, i.e., you cannot rely on the cut lemma or the correctness
of Prim’s or Kruskal’s algorithm.

2. Let G be a connected undirected graph with distinct weights on the edges. Given an edge e of
G, can you decide whether e belongs to the MST in O(E) time? If you compute the MST and
then check whether e belongs to the MST, this would take O(E log V ) time. To design a faster
algorithm, you will need the following theorem:

Edge e = (u, v) does not belong to the MST if and only if there is a path from u to v that consists
of only edges cheaper than e.

Prove this theorem (you can use the cut lemma and the cycle property in the tutorial). Then give
the O(E)-time algorithm.

3. The longest path problem introduced in the lecture is somewhat unnatural to model jobs and
the dependencies. In a more natural structure, vertices would represent jobs and edges would
represent dependencies; that is, edge (u, v) would indicate that job u must be performed before
job v. We would then assign weights to vertices, not edges. Let w(v) be the weight of vertex u.
Give an algorithm to find the longest path from a source vertex s to a destination vertex t, where
the weight of a path is the sum of the weights of its vertices.

4. An n × n grid is an undirected graph consisting of n rows and n columns of vertices, as shown
in the figure below. We denote the vertex in the i-th row and the j-th column by (i, j). All
vertices in a grid have exactly four neighbors, except for the boundary vertices, which are the
points (i, j) for which i = 1, i = n, j = 1, or j = n. Given m ≤ n2 starting points
(x1, y1), (x2, y2), · · · , (xm, ym) in the grid, the escape problem is to determine whether or not
there are m vertex-disjoint paths from the starting points to any m different points on the bound-
ary. For example, the grid in (a) has an escape, but the grid in (b) does not.

(1) Consider a flow network in which vertices, as well as edges, have capacities. That is, the
total positive flow entering any given vertex is subject to a capacity constraint. Show that de-
termining the maximum flow in a network with edge and vertex capacities can be reduced to
an ordinary maximum-flow problem on a flow network of comparable size. More precisely,
you need to convert a network G = (V,E) with capacities on both vertices and edges, to an-
other network G′ = (V ′, E′) with capacities on the edges only, so that the maximum flows
on the two networks are the same, and the new network you construct have V ′ = O(V )
vertices and E′ = O(E) edges. You can assume that the network is connected.

(2) Describe an efficient algorithm to solve the escape problem, and analyze its running time.


