
COMP 3711 Design and Analysis of Algorithms

Solutions to Assignment 3

1. Define c[i] to be the length of the longest increasing subsequence that ends at xi. Note
that the length of the longest increasing subsequence in X is max1≤i≤n c[i]. The longest
increasing subsequence that ends with xi has the form < Z, xi > where Z is the longest
increasing subsequence that ends with xr for some r < i and xr ≤ xi. Thus, we have the
following recurrence relation:

c[i] =















1 if i = 1
1 if xr > xi for all 1 ≤ r < i

max1≤r<i

xr≤xi

c[r] + 1 if i > 1

We compute all the c[i]’s from i = 1 to n. Evaluating the recurrence takes O(n) time, so
the total running time is O(n2).

In order to report the optimal subsequence we need to store for each i, not only c[i] but
also the value of r which achieves the maximum in the recurrence relation. Denote this
by r[i]. If c[i] is a base case, we set r[i] = 0. Then we can trace the solution as follows.
Let c[k] = max1≤i≤n c[i]. Then xk is the last number in the optimal subsequence. Then
we update k ← r[k]. Now xk is the second to last number. Then update k ← r[k] again
and repeat the process until k = 0.

2. This problem is similar to the 0-1 Knapsack problem, except that there is no “value” that
we want to optimize. We just want to check if it possible to fully pack the knapsack.
Thus we use a Boolean array, and define B[i, w] = true if there is a subset of integers in
{a1, . . . , ai} that adds up to w. The recurrence is thus

B[i, w] = B[i− 1, w] or B[i− 1, w − ai].

The base case is B[0, w] = false for any w, B[i, w] = false for any w < 0, and B[i, 0] =
true for any i. We can compute all the B[i, w]’s from i = 1 to n, and for each i, we
compute each B[i, w] from w = 1 to W . The total running time is thus O(nW ). Finally,
we return B[n,W ].

3. Define L[i, j] to be the length of the longest palindromic subsequence for the substring
x[i, ..., j]. If we look at x[i, .., j], then we can find a palindrom of length at least 2 if
x[i] = x[j]. If they are not same then we seek the longest palindromic subsequence in
x[i+1, ..., j] or x[i, ..., j − 1]. Also every character x[i] is a palindrom in itself of length 1.
Therefore, we have the following recurrence:

L[i, j] =

{

L[i+ 1, j − 1] + 2 if x[i] = x[j]
max{L[i+ 1, j], L[i, j − 1]} otherwise

L[i, i] = 1 ∀i ∈ (1, ..., n)
L[i, i − 1] = 0 ∀i ∈ (2, ..., n)

We compute all L[i, j] from shorter strings to longer strings, similar to the optimal BST
problem. More precisely, we first compute all L[i, j] such that j − i = 1, then all L[i, j]

1



such that j − i = 2, . . . , until we have A[1, n]. It takes O(1) time to compute each L[i, j],
so the total running time is O(n2).

To find the actual longest palindromic subsequence, we keep all the choices for each L[i, j]
in an array r[i, j]. Note that each L[i, j] has been computed from one of 3 choices. Then
we start from r[1, n] and print out the palindrom using the following algorithm:

PRINT(L, r, i, j):
if L[i, j] = 1

print x[i]
return

if r[i, j] = 1
print x[i]
PRINT(L, r, i + 1, j − 1)
print x[j]

if r[i, j] = 2
PRINT(L, r, i + 1, j)

if r[i, j] = 3
PRINT(L, r, i, j − 1)

4. The algorithm will be similar to BFS or DFS, except that we only visit vertices that are
active. And whenever we visit a vertex, we spread its influence to its neighbors. The
following code shows the BFS way of doing this by using a queue to store all the active
vertices. You can also use a stack, which will make the algorithm more similar to DFS.

Q = empty

Q.enqueue(r)

count = 1

for each vertex v

d(v) = 0 // d stores the total amount of influence received by v

color(v) = WHITE

color(r) = BLACK

while (Q is not empty)

v = Q.dequeue()

for each u in Adj[v]

if color(u) = WHITE then

d(u) = d(u) + w(v, u)

if d(u) >= t(u) then

color(u) = BLACK

Q.enqueue(u)

count = count + 1

return count

Since the algorithm does no more work than BFS, the running time is O(V + E).

2


