
COMP 3711 Design and Analysis of Algorithms
2015 Fall

Solutions to Assignment 2

1. (a) O(n log n)

(b) Build the heap: O(n). Call Extract-Min k times: O(k log n). Total time: O(n +
k log n).

(c) Build the heap with repeated insertions: O(n log n). Call Extract-Min k times:
O(k log n). Total time: O(n log n).

(d) We first use the linear-time selection algorithm to find the k-th smallest number
(denoted as ak), which takes O(n) time. Then find all the k numbers smaller than
or equal to ak, which takes O(n) time. Finally, we sort these k numbers, which takes
O(k log k) time. So the total running time is O(n + k log k).

2. The subtree T3:

a2 : a3

a1 : a3 a2 : a4

≤

>≤

≤> >

a1 : a4a2, a1, a3, a4

≤ >

a2, a3, a1, a4 a2, a3, a4, a1

a1 : a4

≤ >

a3, a2, a1, a4 a3, a2, a4, a1

a3, a4, a2, a1

3. We use divide-and-conquer combined with counting sort. The first call to the following
recursive algorithm is SortString(A, 1, n, 1).

SortString(A, p, r, i):

if p ≤ r then return;
Sort A[p..r] by the i-th character using counting sort;
foreach group of strings with the same i-th character do

Suppose the current group is A[j..k];
d← j − 1;
for t← j to k do

if A[t] has only i characters then
d← d + 1;
Swap A[t] and A[d];

// This puts all strings with only i characters at the beginning of the group;
SortString(A, d + 1, k, i + 1);

Analysis: We can’t use standard recursion analysis since we don’t know the the size of
each sub-problem. However, we observe that each call to SortString(A, p, r) takes time
linear in the array size p−r+1, not counting the recursive calls. So we just need to count,
for each string s in A, how many SortString calls involve it. We see that a string s
with i characters will only be involved in i SortString calls, so the total running time
is

∑
s(length(s)) = O(n).



4. The algorithm: Put the first base station at x + 4 where x is the coordinate of the first
house. Remove all the houses that are covered and then repeat if there are still houses
not covered.

Correctness: Let X be the solution returned by this greedy algorithm, and let Y be an
optimal solution. Consider the first base station where Y is different from X. Suppose
the base station in X is located at x and the one in Y is located at y. By the greedy
choice, we must have x > y. Now move y to x in Y . The resulting Y must still cover all
houses. Repeatedly applying this transformation will convert Y into X. Thus X is also
an optimal solution.


