
COMP 3711 Design and Analysis of Algorithms
2015 Fall

Solutions to Assignment 1

1. (a) A = Ω(B);

(b) A = O(B), A = Ω(B), A = Θ(B);

(c) A = O(B);

(d) A = O(B), A = Ω(B), A = Θ(B);

(e) A = Ω(B).

2. (a) T (n) = O(log n).

(b) T (n) = O(n2).

(c) T (n) = O(log n).

(d) T (n) = O(nlog 3).

(e) T (n) = O(log log n).

Expanding out the recurrence, we have

T (n) = T (n1/2) + 1 = T (n1/4) + 2 = T (n1/8) + 3 = · · · = T (n1/2x) + x,

where x is the smallest integer such that n1/2x ≤ 2, or 1/2x ≤ logn 2, 2x ≥ log n,
so x ≥ log log n. So we have x = dlog log ne, and T (n) = O(log log n).

3. (a) The running time of merge is linear on the input arrays. We will be running
this on arrays of size:

n + n, 2n + n, ..., (k − 1)n + n

The total cost is (
n

k−1∑
i=1

i

)
+ (k − 1)n

= n

(
k(k − 1)

2

)
+ (k − 1)n

= n
k2 − k

2
+ (k − 1)

= O(nk2).

(b) We use divide-and-conquer, in a way similar to merge sort. We first divide the
k sorted arrays into two halves, recursively merge each half, and then merge
the two halves together.

MULTI-MERGE(A[1..k][1..n], i, j):

if i = j then
return A[i][1..n];

m ← b i+j
2
c;

return MERGE(MULTI-MERGE(A, i, m), MULTI-MERGE(A, m+ 1, j));



The initial call to this recursive algorithm is MULTI-MERGE(A, 1, k).

Let T (k) be the running time of the algorithm on k sorted lists. We have
the recurrence T (k) = 2T (k/2) + O(nk) and T (1) = O(n), which solves to
T (k) = O(nk log k).

4. If n ≤ 3 we can solve the problem trivially. Let m = bn/2c. We look at the three
elements A[m− 1], A[m], A[m + 1]. There could be the following cases:

(a) If A[m− 1] > A[m] and A[m] < A[m + 1], then A[m] is a local minimum and
we are done;

(b) If A[m − 1] < A[m] < A[m + 1], then by the boundary condition there must
be at least one local minimum between A[1] and A[m], so we recursively solve
the problem on A[1..m];

(c) If A[m− 1] > A[m] > A[m+ 1], similar to the case above, we recursively solve
the problem on A[m..n];

(d) If A[m− 1] < A[m] and A[m] > A[m + 1], we can recurse into either A[1..m]
or A[m..n], but not both.

In any case, we either terminate or reduce the problem size by half. So we have the
recurrence T (n) ≤ T (n/2) + O(1), which solves to T (n) = O(log n).

5. (a) We use another array C[i] to remember whether i has been checked, and a
variable m to remember how many indices have been checked.

RandomSearch(A, x):

n← size of A;
m← 0;
C[1..n]← 0;
while m < n do

j ← random(1, n);
if C[j] = 0 then

C[j]← 1;
m← m + 1;

else
if A[j] = x then return A[j] ;

return nil;

(b) This is the same as the waiting time problem where the success probability is
p = 1/n. So the expected number of indices we pick until we find A[i] = x is
1/p = n.

(c) This is the same as the waiting time problem where the success probability is
p = k/n. So the expected number of indices we pick until we find A[i] = x
is 1/p = n/k. Thus for larger k, the randomized algorithm is better than the
deterministic algorithm.

(d) This is the same as the coupon collector problem, so the expected number of
indices is O(n log n). Note that this is worse than the deterministic algorithm.


