
COMP 3711 Design and Analysis of Algorithms
Fall 2015

Written Assignment 1

1. For each pair of expressions (A,B) below, indicate whether A is O, Ω, or Θ of B. Note
that zero, one, or more of these relations may hold for a given pair. List all correct
ones. It often happens that some students will get the directions wrong, so please write
out the relation in full, i.e., A = O(B), A = Ω(B), or A = Θ(B) when in doubt.

(a) A = n3 − 100n,B = n2;

(b) A = log n,B = log1.1 n;

(c) A = 22n, B = 23n;

(d) A = 2logn, B = n;

(e) A = log log n,B = 10100 (this number, which is 1 followed by 100 zeroes, is called
“googol”).

2. Give asymptotic upper bounds for T (n) under the following recurrences. Make your
bounds as tight as possible. A correct answer will gain full credits; otherwise, showing
the steps may gain you partial credits.

(a) T (1) = 1;T (n) = T (n/2) + 1 for n > 1.

(b) T (1) = 1;T (n) = 2T (n/2) + n2 for n > 1.

(c) T (1) = 1;T (n) = T (2n/3) + 1 for n > 1.

(d) T (1) = 1; T (n) = 3T (n/2) + n for n > 1.

(e) T (n) = 1 for n ≤ 2; T (n) = T (
√
n) + 1 for n > 2.

3. Suppose you have k sorted arrays, each with n numbers, and you want to combine them
into a single sorted array of kn numbers. We are going to use the Merge procedure in
mergesort for this task. Recall that given two sorted arrays of sizes x and y, Merge
combines them into one sorted array in O(x + y) time.

(a) One strategy is to first Merge the first two arrays, then merge in the third, then
merge in the fourth, and so on. What is the running time of this algorithm (in
terms of k and n)?

(b) Give a more efficient solution to this problem, and analyze its running time. For
full credits your algorithm should run in time O(nk log k).

Turn to the next page...

1



4. Suppose we are given an array A[1 . . . n] of distinct numbers with the special property
that A[1] > A[2] and A[n−1] < A[n]. We say that an element A[x] is a local minimum if
it is less than both its neighbors, or more formally, if A[x−1] > A[x] and A[x] < A[x+1].
For example, there are two local minima (3 and 1) in the following array:

9 3 7 2 1 4 5

We can obviously find a local minimum in O(n) time by scanning through the array.
Describe and analyze an algorithm that finds a local minimum in O(log n) time. If
there is more than one local minimum, finding any of them is fine. [Hint: With the
given boundary conditions, the array must have at least one local minimum. ]

5. We know that given a sorted array A and a value x, we can use binary search to find x
in A (if it exists) in O(log n) time. If A is unsorted, then binary search does not work,
and the best deterministic algorithm would just scan the entire A to look for x, which
takes n comparisons in the worst case. Below we explore if it is possible to reduce the
running time by randomization.

Consider the following randomized strategy: pick a random index i into A. If A[i] = x,
then we terminate; otherwise, we continue the search by picking a new random index
into A. We continue picking random indices into A until we find an index j such that
A[j] = x or until we have checked every element of A. Note that we pick from the
whole set of indices each time, so that we may examine a given element more than
once.

(a) Write pseudocode for a procedure RandomSearch to implement the strategy
above. Be sure that your algorithm terminates when all indices into A have been
picked. You may use an additional array.

(b) Suppose that there is exactly one index i such that A[i] = x. What is the expected
number of indices into A that we must pick until we find x and RandomSearch
terminates?

(c) Generalizing your solution to part (b), suppose that there are k ≥ 1 indices i
such that A[i] = x. What is the expected number of indices into A that we must
pick until we find x and Random-Search terminates? Your answer should be a
function of n and k.

(d) Suppose that there are no indices i such that A[i] = x. What is the expected
number of indices into A that we must pick until we have checked all elements of
A and RandomSearch terminates?

2


