
Lecture 18: Maximum Flow



2

Input: A directed connected graph 𝐺 = 𝑉, 𝐸 , where

 every edge 𝑒 ∈ 𝐸 has a capacity 𝑐(𝑒);

 a source vertex 𝑠 and a target vertex 𝑡.

Output: A flow 𝑓: 𝐸 → 𝐑 from 𝑠 to 𝑡, such that

 For each 𝑒 ∈ 𝐸, 0 ≤ 𝑓 𝑒 ≤ 𝑐(𝑒) (capacity)

 For each 𝑣 ∈ 𝑉 − 𝑠, 𝑡 , 𝑒 out of 𝑣 𝑓 𝑒 =  𝑒 into 𝑣 𝑓(𝑒) (conservation)

Flow

4

0

0

0

0 0

0 4 4

0

0

0

Value = 40

capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

4



3

Def: The value of a flow 𝑓 is 𝑓 =  𝑣 𝑓(𝑠, 𝑣) =  𝑣 𝑓(𝑣, 𝑡)

The maximum flow problem is to find the flow with maximum value.

Example: The flow below is a maximum flow.

Q: How do I know this flow achieves the maximum value possible?

Maximum Flow

10

9

9

14

4 10

4 8 9

1

0 0

0

14

capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 28



Flow Applications

Direct applications

 Water flowing in pipes

 Electricity flows

 Vehicle traffic flows

 Communication network traffic flows

Indirect applications

 Bipartite matching

 Circulation-demand problem

 Baseball elimination

 Airline scheduling

 Fairness in car sharing (carpool)

 …

4



5

Def: An s-t cut is a partition (𝑆, 𝑇) of 𝑉 with 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇.

Def: The capacity of the cut (𝑆, 𝑇) is 𝑐 𝑆, 𝑇 =  𝑒 from 𝑆 to 𝑇 𝑐(𝑒)

Claim: The value of any s-t flow cannot exceed the capacity of any s-t cut.

Observation: An s-t cut with capacity matching the value of a flow is a 

“proof” that the flow is a max flow.

s-t Cut

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
S

Capacity = 10 + 8 + 10
= 28



Assumptions

Antiparallel edges

 𝑢, 𝑣 , 𝑣, 𝑢 ∈ 𝐸

 Models two-way traffic

 Cause problems in algorithms

 But can be removed by adding an auxiliary vertex

 Will assume no antiparallel edges

Also assume

 No edges going into 𝑠

 No edges going out of 𝑡

6



7

Towards a Max Flow Algorithm

Greedy algorithm.

 Start with 𝑓(𝑒) = 0 for all edge 𝑒 ∈ 𝐸.

 Find an s-t path 𝑃 where each edge has 𝑓(𝑒) < 𝑐(𝑒).

 Augment flow along path 𝑃.

 Repeat until you get stuck.

s

1

2

t

10

10

0 0

0 0

0

20

20

30

Flow value = 0



8

Towards a Max Flow Algorithm

Greedy algorithm.

 Start with 𝑓(𝑒) = 0 for all edge 𝑒 ∈ 𝐸.

 Find an s-t path 𝑃 where each edge has 𝑓(𝑒) < 𝑐(𝑒).

 Augment flow along path 𝑃.

 Repeat until you get stuck.

s

1

2

t

20

Flow value = 20

10

10 20

30

0 0

0 0

0

X

X

X

20

20

20



9

Towards a Max Flow Algorithm

Greedy algorithm.

 Start with 𝑓(𝑒) = 0 for all edge 𝑒 ∈ 𝐸.

 Find an s-t path 𝑃 where each edge has 𝑓(𝑒) < 𝑐(𝑒).

 Augment flow along path 𝑃.

 Repeat until you get stuck.

greedy = 20

s

1

2

t

20 10

10 20

30

20 0

0

20

20

opt = 30

s

1

2

t

20 10

10 20

30

20 10

10

10

20

local optimality ≠ global optimality



10

Residual Graph

Original edge:  𝑒 = 𝑢, 𝑣 ∈ 𝐸.

 Flow 𝑓(𝑒), capacity 𝑐(𝑒).

Residual edges:

 If 𝑓 𝑢, 𝑣 = 0, it has one residual edge

(𝑢, 𝑣) with residual capacity 𝑐𝑓 𝑢, 𝑣 = 𝑐(𝑢, 𝑣)

 If 𝑓 𝑢, 𝑣 = 𝑐(𝑢, 𝑣), it has one residual edge

(𝑣, 𝑢) with residual capacity 𝑐𝑓 𝑣, 𝑢 = 𝑓(𝑢, 𝑣)

 If 0 < 𝑓 𝑢, 𝑣 < 𝑐(𝑢, 𝑣), it has two residual edges: 

– (𝑢, 𝑣) with 𝑐𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 − 𝑓 𝑢, 𝑣

– (𝑣, 𝑢) with 𝑐𝑓 𝑣, 𝑢 = 𝑓 𝑢, 𝑣

Residual graph: 𝐺𝑓 = (𝑉, 𝐸𝑓).

 Vertices are the same vertices

 Edges are all the residual edges

u v17

6

capacity

u v11

residual capacity

6
residual capacity

flow



11

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

0

0

0

0 0 0

0

0

G:

Flow value = 0

0

flow
capacity



12

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

0

0

0

0 0 0

0

0

G:

s

2

3

4

5 t10 9

4

1062

Gf:

10 8

10

8 8

8

X X

X

0

Flow value = 0

capacity

residual capacity

flow



13

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

8

0

0

0 0 8

8

0 0

G:

s

2

3

4

5 t10

4

106

Gf:

8

8

8

9

22

2

10

2
10

X

X

X2X

Flow value = 8



14

0

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

10

0

0

0 2 10

8

2

G:

s

2

3

4

5 t

4

2

Gf:

10

810

2

10 7

106

X

6
6

6

X

X

8X

Flow value = 10



15

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

10

0

6

6 8 10

8

2

G:

s

2

3

4

5 t1

6

Gf:

10

810

8

6

6

6

4

4

4

2

X

8

2

8

X

X

0
X

Flow value = 16



16

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

10

2

8

8 8 10

8

0

G:

s

2

3

4

5 t

62

Gf:

10

10

8

6

8

8

2

2 1

2

8 2

X

9

7 9

X

X

9X

X 3

Flow value = 18



17

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

10

3

9

9 9 10

7

0

G:

s

2

3

4

5 t1 9

1

162

Gf:

10

710

6

9

9

3

1

Flow value = 19



18

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

10

3

9

9 9 10

7

0

G:

s

2

3

4

5 t1 9

1

162

Gf:

10

710

6

9

9

3

1

Flow value = 19Cut capacity = 19



Ford-Fulkerson Algorithm

19

Ford-Fulkerson(𝐺, 𝑠, 𝑡) {

for each (𝑢, 𝑣) ∈ 𝐸 do

𝑓 𝑢, 𝑣 ← 0

𝑐𝑓 𝑢, 𝑣 ← 𝑐(𝑒)

𝑐𝑓 𝑣, 𝑢 ← 0

while there exists path 𝑃 in residual graph 𝐺𝑓 do

𝑐𝑓 𝑝 ← min{𝑐𝑓 𝑒 : 𝑒 ∈ 𝑃}
for each edge 𝑢, 𝑣 ∈ 𝑃 do

if 𝑢, 𝑣 ∈ 𝐸 then 

𝑓 𝑢, 𝑣 ← 𝑓 𝑢, 𝑣 + 𝑐𝑓 𝑝

𝑐𝑓 𝑢, 𝑣 ← 𝑐𝑓 𝑢, 𝑣 − 𝑐𝑓 𝑝
else

𝑓 𝑣, 𝑢 ← 𝑓 𝑣, 𝑢 − 𝑐𝑓 𝑝

𝑐𝑓 𝑣, 𝑢 ← 𝑐𝑓 𝑣, 𝑢 + 𝑐𝑓 𝑝



20

Def: Let 𝑓 be any flow, and let (𝑆, 𝑇) be any s-t cut.  Then, the net flow 

across the cut is
𝑓 𝑆, 𝑇 =  

𝑒 from 𝑆 to 𝑇

𝑓(𝑒) −  

𝑒 from 𝑇 to 𝑆

𝑓(𝑒)

Net flow lemma: For any s-t cut 𝑆, 𝑇 , 𝑓 𝑆, 𝑇 = |𝑓|.

Net flow and cuts

10

6

6

11

1 10

3 8 8

0

0

0

11

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 24

4

A



21

Def: Let 𝑓 be any flow, and let (𝑆, 𝑇) be any s-t cut.  Then, the net flow 

across the cut is
𝑓 𝑆, 𝑇 =  

𝑒 from 𝑆 to 𝑇

𝑓(𝑒) −  

𝑒 from 𝑇 to 𝑆

𝑓(𝑒)

Net flow lemma: For any s-t cut 𝑆, 𝑇 , 𝑓 𝑆, 𝑇 = |𝑓|.

Net flow and cuts

10

6

6

1 10

3 8 8

0

0

0

11

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 6 + 0 + 8 - 1 + 11
= 24

4

11

A



22

Net flow lemma: Let 𝑓 be any flow, and let (𝑆, 𝑇) be any s-t cut.  Then, 

 

𝑒 from 𝑆 to 𝑇

𝑓(𝑒) −  

𝑒 from 𝑇 to 𝑆

𝑓 𝑒 = |𝑓|

Proof:
 

𝑒 out of 𝑠

𝑓 𝑒 = 𝑓

By flow conservation, for any vertex 𝑣,

 

𝑒 out of 𝑣

𝑓 𝑒 −  

𝑒 into 𝑣

𝑓 𝑒 = 0

Sum (2) over all 𝑣 ∈ 𝑆 − 𝑠 , together with (1). We see that

 For every edge 𝑒 inside 𝑆, both 𝑓 𝑒 and −𝑓(𝑒) appear

 For every edge 𝑒 from 𝑆 to 𝑇, only 𝑓(𝑒) appear

 For every edge 𝑒 from 𝑇 to 𝑆, only −𝑓(𝑒) appear

Lemma is thus proved.

Net flow and cuts

(1)

(2)



23

Def: The capacity of the cut (𝑆, 𝑇) is 𝑐 𝑆, 𝑇 =  𝑒 from 𝑆 to 𝑇 𝑐(𝑒)

Claim: For any flow 𝑓 and any s-t cut (𝑆, 𝑇), 𝑓 ≤ 𝑐(𝑆, 𝑇).

Proof:
𝑓 =  

𝑒 from 𝑆 to 𝑇

𝑓(𝑒) −  

𝑒 from 𝑇 to 𝑆

𝑓 𝑒

≤  

𝑒 from 𝑆 to 𝑇

𝑓 𝑒 ≤  

𝑒 from 𝑆 to 𝑇

𝑐 𝑒 = 𝑐(𝑆, 𝑇)

Flow and Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
A

Capacity = 10 + 8 + 10
= 28



Correctness of Ford-Fulkerson Algorithm

Max-Flow min-cut theorem: Let 𝑓 be any flow. Then the following three 

statements are equivalent:

(1) 𝑓 is a maximum flow.

(2) The residual graph 𝐺𝑓 has no path from 𝑠 to 𝑡.

(3) 𝑓 = 𝑐(𝑆, 𝑇) for some s-t cut 𝑆, 𝑇 .

Proof: (1) ⇒ (2), or ¬(2) ⇒ ¬(1): If there is a path in 𝐺𝑓, we can improve 𝑓.

(2) ⇒ (3): 

 Need to find an s-t cut (𝑆, 𝑇) such that 𝑓 = 𝑐(𝑆, 𝑇)

 By net flow lemma, 𝑓 = 𝑓(𝑆, 𝑇), so must find a cut such that

– all edges 𝑒 from 𝑆 to 𝑇 are full, i.e., 𝑓 𝑒 = 𝑐(𝑒)

– all edges 𝑒 from 𝑇 to 𝑆 are empty, i.e., 𝑓 𝑒 = 0

 Consider 𝑆 = set of all nodes reachable from 𝑠 in 𝐺𝑓.

 𝑆 cannot include 𝑡 due to (2), so it is a valid s-t cut

 And this cut must meet the two conditions above!

(3) ⇒ (1): By the claim from last page.

24



Ford-Fulkerson: Running time analysis

Q: Which path to choose in the residual graph?

A: Ford-Fulkerson doesn’t specify.

 The choice does not affect correctness

 But it does affect running time

Claim: When all capacities are integers, Ford-Fulkerson takes at most 

|𝑓∗| iterations, where 𝑓∗ is a maximum flow.

Proof: Each iteration increases |𝑓| by at least 1.

Bad example:

Note: When capacities are irrational numbers, the algorithm may never 

terminate!
25



Edmonds-Karp: Choosing the shortest augmenting path

Idea: Choose the shortest (in terms of # edges) path in residual graph

 Can be done in 𝑂(𝐸) time using BFS.

Theorem: If we always choose the shortest path in the residual graph 

to augment the flow, then the Ford-Fulkerson algorithm terminates in 

𝑂 𝑉𝐸 iterations.

Proof: See textbook (not required).

Corollary: The Ford-Fulkerson algorithm can be implemented to run in 

𝑂(𝑉𝐸2) time.

More advanced algorithms

 Push-relabel algorithms, 𝑂(𝑉2𝐸) time, and perform well in practice 

(see textbook for details)

 Theoretically best algorithm: 𝑂(𝑉𝐸) time

[King, Rao, Tarjan, 1994] [Orlin, 2013]

26



Applications of Max Flow

27



28

Disjoint path problem.  Given a directed graph 𝐺 = (𝑉, 𝐸) and two nodes 

𝑠 and 𝑡, find the max number of edge-disjoint s-t paths.

Def.  Two paths are edge-disjoint if they have no edge in common.

Application: Communication networks.

s

2

3

4

Edge Disjoint Paths

5

6

7

t



29

Max flow formulation:  assign unit capacity to every edge.

Theorem.  Max number edge-disjoint s-t paths equals max flow value.

Proof.   

 Suppose there are 𝑘 edge-disjoint paths 𝑃1, … , 𝑃𝑘.

 Set 𝑓(𝑒) = 1 if 𝑒 participates in some path 𝑃𝑖; else set 𝑓(𝑒) = 0.

 Since paths are edge-disjoint, 𝑓 is a flow of value 𝑘.  

Edge Disjoint Paths

s t

1

1

1

1

1

1

1
1

1

1

1

1

1

1



30

Max flow formulation:  assign unit capacity to every edge.

Proof.   

 Let 𝑓 be a max flow in 𝐺′ of value 𝑘 computed by Ford-Fulkerson

 𝑓 𝑒 = 1 or 0 for every edge 𝑒 (integrality property).

 Consider any edge (𝑠, 𝑢) with 𝑓(𝑠, 𝑢) = 1.

– By conservation, there exists an edge (𝑢, 𝑣) with 𝑓(𝑢, 𝑣) = 1

– Continue to find the next unused edge out of 𝑣 until reaching 𝑡.

 After finding one path, flow value decreases by 1.

 Repeat the process 𝑘 times to find 𝑘 edge-disjoint paths.

 The proof above also provides an algorithm.

Edge Disjoint Paths

s t

1

1

1

1

1

1

1
1

1

1

1

1

1

1



31

Maximum Bipartite Matching

Input: An undirected, connected, bipartite graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸).

Def: 𝑀 ⊆ 𝐸 is a matching if each node appears in at most edge in 𝑀.

Goal: Find a max cardinality matching.

Applications: Assign jobs to people, tasks to machines, etc.

1

3

5

1'

3'

5'

2

4

2'

4'

matching

1-2', 3-1', 4-5'  

RL



32

Maximum Bipartite Matching

Input: An undirected, connected, bipartite graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸).

Def: 𝑀 ⊆ 𝐸 is a matching if each node appears in at most edge in 𝑀.

Goal: Find a max cardinality matching.

Applications: Assign jobs to people, tasks to machines, etc.

1

3

5

1'

3'

5'

2

4

2'

4'

RL

max matching

1-1', 2-2', 3-3' 4-4'  



33

Max flow formulation.

 Create directed graph 𝐺′ = (𝐿 ∪ 𝑅 ∪ {𝑠, 𝑡}, 𝐸′ ).

 Direct all edges from 𝐿 to 𝑅, and assign capacity ∞.

 Add source 𝑠, and unit capacity edges from 𝑠 to each node in 𝐿.

 Add target 𝑡, and unit capacity edges from each node in 𝑅 to 𝑡.

From bipartite matching to flow

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

∞

𝑅𝐿

𝐺′



34

Theorem.  Max cardinality matching in 𝐺 = value of max flow in 𝐺′.

Pf.  

 Given max matching 𝑀 of cardinality 𝑘.

 Consider flow 𝑓 that sends 1 unit along each of the 𝑘 paths.

 𝑓 is a flow, and has cardinality 𝑘.  

Maximum Bipartite Matching:  Proof of Correctness

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

1

3

5

1'

3'

5'

2

4

2'

4'

G'G



35

Theorem.  Max cardinality matching in 𝐺 = value of max flow in 𝐺′.

Pf.  

 Let 𝑓 be a max flow in 𝐺′ of value 𝑘 computed by Ford-Fulkerson

 𝑓 𝑒 = 1 or 0 for every edge 𝑒.

 Consider 𝑀 = set of edges from 𝐿 to 𝑅 with 𝑓(𝑒) = 1.

– each node in 𝐿 and 𝑅 participates in at most one edge in 𝑀

– |𝑀| = 𝑘

Maximum Bipartite Matching:  Proof of Correctness

1

3

5

1'

3'

5'

2

4

2'

4'

G

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1



G'



Maximum Bipartite matching: Running time

Running time: 𝑂(𝑉𝐸)

 Each iteration increases |𝑓| by at least 1.

 𝑓∗ ≤ 𝑉/2

 Each iteration takes 𝑂(𝐸) time.

Note: This holds no matter which augmenting path to choose.

Specialized algorithms

 𝑂( 𝑉𝐸) [Hopcroft–Karp, 1973]

 𝑂(𝑉2.376) using matrix multiplication [Mucha-Sankowski, 2004]

 𝑂(𝐸10/7) [Madry, 2013]

 But in practice, they are not as good as using max flow algorithms.

36



37

Input: A directed connected graph 𝐺 = 𝑉, 𝐸 , where

 every edge 𝑒 ∈ 𝐸 has a capacity 𝑐(𝑒);

 a number of source vertices 𝑠1, 𝑠2, …, each with a supply of 𝑠𝑢𝑝(𝑠𝑖) and 

a number of target vertices 𝑡1, 𝑡2, …, each with a demand of 𝑑𝑒𝑚 𝑡𝑖 ;

  𝑖 𝑠𝑢𝑝 𝑠𝑖 ≥  𝑖 𝑑𝑒𝑚(𝑡𝑖)

Output: A flow 𝑓 that meets capacity and conservation conditions, and

 At each source vertex 𝑠𝑖,  𝑒 out of 𝑠𝑖 𝑓 𝑒 −  𝑒 into 𝑠𝑖 𝑓 𝑒 ≤ 𝑠𝑢𝑝 𝑠𝑖 ;

 At each target vertex 𝑡𝑖,  𝑒 into 𝑡𝑖 𝑓 𝑒 −  𝑒 out of 𝑡𝑖 𝑓 𝑒 = 𝑑𝑒𝑚 𝑠𝑖 .

3

10 6

7

8

13

6

4

9

9

3

8

7

4

4

6

6

7

1

4 2

flow

Circulation with Demands

capacity demand

supply



38

Solving Circulation with Demands using Max Flow

Algorithm:

 Add a “super source” 𝑠 and a “super target” 𝑡.

 Add an edge from 𝑠 to each 𝑠𝑖 with capacity 𝑠𝑢𝑝 𝑠𝑖 .

 Add an edge from each 𝑡𝑖 to 𝑡 with capacity 𝑑𝑒𝑚 𝑡𝑖 .

 Compute the max flow 𝑓.

 If 𝑓 =  𝑖 𝑑𝑒𝑚(𝑡𝑖), then return 𝑓; else return “no solution”.

G':

supply

3

10 6 9

7

4

7

4

s

t

8 13

7 8 6

demand



Baseball Elimination

Rule: Order teams by the number of wins.

Q: Does Team 4 still have a chance to finish in the first place (tie is 

OK)?

A: No, obviously.

39

Team
𝑖

Remaining Against = 𝑟𝑖𝑗Wins
𝑤𝑖

To play
𝑟𝑖 1 2 3 4

4 0 2 0 1 1 -

3 2 3 1 1 - 1

2 2 3 1 - 1 1

1 3 2 - 1 1 0



Baseball Elimination

Q: Does Team 4 still have a chance to finish in the first place (tie is 

OK)?

A: No, because

 Team 4 has to win both remaining games against team 2 and 3.

 Team 1 has to lose both remaining games against team 2 and 3.

 Then 2 and 3 will both have 3 wins.

 The game between team 2 and 3 will give one of them one more win.

Suppose you need to do this for MLB / Premier League…

40

Team
𝑖

Remaining Against = 𝑟𝑖𝑗Wins
𝑤𝑖

To play
𝑟𝑖 1 2 3 4

4 1 2 0 1 1 -

3 2 3 1 1 - 1

2 2 3 1 - 1 1

1 3 2 - 1 1 0



Baseball Elimination: Formal Definition

Input:

 𝑛 teams: 1, 2, … , 𝑛

 One particular team, say 𝑛 (without loss of generality)

 Team 𝑖 has won 𝑤𝑖 games already

 Team 𝑖 and 𝑗 still need to play 𝑟𝑖𝑗 games, 𝑟𝑖𝑗 = 0 or 1. 

 Team 𝑖 has a total of 𝑟𝑖 =  𝑗 𝑟𝑖𝑗 games to play

Output:

 “Yes”, if there is an outcome for each remaining game such that 

team 𝑛 finishes with the most wins (tie is OK).

 “No”, if no such possibilities.

Brute-force algorithm:

 For each remaining game, consider two possible outcomes.

 Try all 2𝑟 possible combinations, where 𝑟 =  𝑖,𝑗 𝑟𝑖𝑗

41



42

Can team 𝑛 finish with most wins?

 Assume team 𝑛 wins all remaining games ⇒ 𝑤𝑛 + 𝑟𝑛 wins. 

 All other teams must have ≤ 𝑤𝑛 + 𝑟𝑛 wins.

Flow network construction:

 A source 𝑠 and a target 𝑡

 A node for each remaining game (𝑖, 𝑗); and an edge from 𝑠 to it with 

capacity 1

 A node for each team 𝑖 = 1, 2, … , 𝑛 − 1; and an edge from it to 𝑡 with 

capacity 𝑤𝑛 + 𝑟𝑛 − 𝑤𝑖
 Game node (𝑖, 𝑗) has edges to team node 𝑖 and 𝑗, with capacity 1

Baseball Elimination: Max Flow Formulation

s

1-2

2-3

1

2 t1-31

1

𝑤4 + 𝑟4 −𝑤2

team 2 is allowed 
to win this many
more games

1

game nodes team nodes

3



43

Claim: There is a way for team 𝑛 to finish in the first place iff the max 

flow has value 𝑟 =  𝑖,𝑗 𝑟𝑖𝑗.

Proof: “⇒”: Suppose there is an outcome for each remaining game such 

that team 𝑛 finishes the first. First set 𝑓 𝑠, 𝑖, 𝑗 = 1 for all (𝑖, 𝑗).

For each remaining game 𝑖, 𝑗 :

 if 𝑖 wins, set 𝑓 𝑖, 𝑗 , 𝑖 = 1 and 𝑓 𝑖, 𝑗 , 𝑗 = 0;

 if 𝑗 wins, set 𝑓 𝑖, 𝑗 , 𝑗 = 1 and 𝑓 𝑖, 𝑗 , 𝑖 = 0.

Team 𝑖 wins ≤ 𝑤𝑛 + 𝑟𝑛 − 𝑤𝑖 games, so it can send all incoming flow to 𝑡.

Baseball Elimination: Max Flow Formulation

s

1-2

2-3

1

2 t1-31

1

𝑤4 + 𝑟4 −𝑤2

team 2 is allowed 
to win this many
more games

1

game nodes team nodes

3



44

Proof: “⇐”: Suppose the max flow 𝑓 has 𝑓 = 𝑟. It must saturate all 

edges out of 𝑠.

Look at each game node 𝑖, 𝑗 . Exactly one of its outgoing edges must 

have 1 unit of flow (integrality property):

 If 𝑓 𝑖, 𝑗 , 𝑖 = 1, let 𝑖 win the game;

 If 𝑓 𝑖, 𝑗 , 𝑗 = 1, let 𝑗 win the game.

Team node 𝑖 receives ≤ 𝑤𝑛 + 𝑟𝑛 − 𝑤𝑖 units of flow, each corresponding 

to one win, so it cannot beat team 𝑛.

Baseball Elimination: Max Flow Formulation

team 2 is allowed 
to win this many
more games

s

1-2

2-3

1

2 t1-31

1

𝑤4 + 𝑟4 −𝑤2

1

game nodes team nodes

3



Baseball Elimination: Extensions

Q: What if 𝑟𝑖𝑗 can be more than 1?

Q: Can this be used for football (soccer) leagues?

 Using the old rule: Winner takes 2 points, loser 0 point; each team 

gets 1 point in case of a tie.

45


