Lecture 18: Maximum Flow

Flow

Input: A directed connected graph G = (V,E), where
. every edge e € E has a capacity c(e);
. asource vertex s and a target vertex t.

Output: A flow f: E - R from s to t, such that

. Foreache€eE,0<f(e) <c(e) (capacity)
. Foreachv eV —{s,t},Y. outofvf(€) = Yeintonf(€) (conservation)
0
@ 9 ®
4 . 0
10 4 4 15 15 0 10
0 4 4
© > ® 8 O 10 O
0 0
0 15 0
capacity — 15 i 6 10
flow — 0 0
Value = 4

® 30 @

Maximum Flow

Def: The value of a flow fis |[fl| =X, f(s,v) =Y, f(v, 1)
The maximum flow problem is to find the flow with maximum value.
Example: The flow below is a maximum flow.

Q: How do I know this flow achieves the maximum value possible?

@ 9 ®

10 : 9
10 4 0 15 15 0 10
4 8 9

)
@
©,

©

4 10
, 4 0 6 15 0
capacity — 15 10
flow — 14 14

Value = 28

® 30 @

Flow Applications

Direct applications
. Water flowing in pipes
. Electricity flows
. Vehicle traffic flows
. Communication network traffic flows

Indirect applications
. Bipartite matching
. Circulation-demand problem
. Baseball elimination
. Airline scheduling
. Fairness in car sharing (carpool)

s-1 Cut

Def: An s-t cut is a partition (S,T) of Vwiths € Sand t € T.
Def: The capacity of the cut (S,T) is ¢(S,T) = Y¢ from s to 7 €(€)
Claim: The value of any s-t flow cannot exceed the capacity of any s-t cut.

Observation: An s-t cut with capacity matching the value of a flow is a
“proof” that the flow is a max flow.

S0
s 10 ? 15 15
N
S

15

10

S

10

Capacity = 10 + 8 + 10
=28

4 30

Assumptions

Antiparallel edges
. (u,v),(v,u) €E
. Models two-way traffic
. Cause problems in algorithms
. But can be removed by adding an auxiliary vertex
. Will assume no antiparallel edges

Also assume
. No edges going into s
. No edges going out of ¢

Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) =0 for all edge e € E.

. Find an s-t path P where each edge has f(e) < c(e).

. Augment flow along path P.
. Repeat until you get stuck.

1
0 0
20 10
30 O
10 20

o\é/o

Flow value = 0

Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) =0 for all edge e € E.

. Find an s-t path P where each edge has f(e) < c(e).

. Augment flow along path P.
. Repeat until you get stuck.

1
20 X 0
20 10
30 ¥ 20
10 20

o\é/}&zo

Flow value = 20

Towards a Max Flow Algorithm

Greedy algorithm.
. Start with f(e) =0 for all edge e € E.
. Find an s-t path P where each edge has f(e) < c(e).
. Augment flow along path P.
. Repeat until you get stuck.

™ local optimality # global optimality

1 1
20 0 20 10
20 10 20 10
30 20 30 10
10 20 10 20

O\{'}/ZO IO\CD/ZO
0o ¢ opt = 30 ‘

greedy = 2

Residual Graph

Original edge: e = (u,v) € E.

. Flow f(e), capacity c(e).

capacity
Residual edges:
. If f(u,v) =0, it has one residual edge o, 17—
(u, v) with residual capacity cs(u,v) = c(u, v) 6
. If f(u,v) = c(u,v), it has one residual edge N flow

(v,u) with residual capacity ¢ (v,u) = f(u,v)
. If 0 < f(u,v) < c(u,v), it has two residual edges:
- (w,v) with ¢(u,v) = c(u,v) — f(u,v)

- (v, w) with ¢r(v,u) = f(w,v) :>’: /Q

reSIdual capacity

Residual graph: G; = (V, Ef).

. Vertices are the same vertices

N residual capacity

. Edges are all the residual edges

10

Ford-Fulkerson Algorithm

10 2 0 60
0 ' 0 \
s 10 (3) 9 -(5)

(2 flow
3 / capacity
0/

10
O\@
10—

Flow value = 0

1

Ford-Fulkerson Algorithm

. fl
2 4 :\4 ow
/‘\ /" capacity
8 B R 8 0/
8

10

| 8 \:

8&\@
10—

Flow value = 0

-(4 . .
<‘p\-esudual capacity
/

10

9 -(&)— 1o>®

12

Ford-Fulkerson Algorithm

7‘?/\ :GD\
2 2 8 6

Flow value = 8

o N

13

Ford-Fulkerson Algorithm

0
4 ’\f
8 86
8 68 10
\ 6
8 10

10

Flow value = 10

4 :%D\

8 6 10

7 g&— 1o>®
2

14

Ford-Fulkerson Algorithm

:\f‘:
X 8
10 2 66 10
0]
% 8 v \ 10

Flow value = 16

®

[N

o
>@
oo AX

\O 0O

15

Ford-Fulkerson Algorithm

:\4
7 B9
\6 6 10
° IO\@
:@ 10 —p

Flow value = 18

/“(2”\8

2

‘—10

16

Ford-Fulkerson Algorithm

10

3
2 4 >4
. /G\ 7 /\9
10 20 8 66
9 } 9\
s 10 (3) 9 -(5)

IO\@
10—

Flow value = 19

17

Ford-Fulkerson Algorithm

10 20
9 !
s 10 6

66 10
9) —

Q) 10

Cut capacity = 19

Flow value = 19

18

Ford-Fulkerson Algorithm

Ford-Fulkerson (G,s,t) {
for each (u,v) €EE do
fu,v) <0
cr(u,v) « c(e)
cr(v,u) < 0
while there exists path P in residual graph G; do
¢s(p) < min{cs(e): e € P}
for each edge (u,v) € P do
if (u,v) €E then
F@wv) « f@,v) + ¢ (p)
Cf(u» V) « Cf(u; v) — Cf(p)
else
f@,uw) < f@,u) - ¢ ()
cr(v,u) « cr(v,u) + ¢ (p)

19

Net flow and cuts

Def: Let f be any flow, and let (S, T) be any s-t cut. Then, the net flow
across the cut is
fET=) fE@- Y fE

efromStoT efromTtoS

Net flow lemma: For any s-t cut (S,T), f(S,T) = |f].

®

10

9
0 6
10 4 4 15 15 0 10
3 8 8
s —@ 8 ® o @
A 1 10
4 0 15 0
15 6 10
11
11
Value = 24
\‘@ . @

20

Net flow and cuts

Def: Let f be any flow, and let (S, T) be any s-t cut. Then, the net flow
across the cut is
fEm=) fE@- Y fE

efromStoT efromTtoS

Net flow lemma: For any s-t cut (S,T), f(S,T) = |f].

>5)

6
10

A %\@ =9
>,

10

Value=6+0+8-1+11
=24

21

Net flow and cuts

Net flow lemma: Let f be any flow, and let (S,T) be any s-t cut. Then,

> f@-) fE@=If

efromStoT efromTtoS

Proof:
> > f@=Ifl 1)

eoutofs

By flow conservation, for any vertex v,

S f@- Y fe)=0 (2)

e out of v eintov

Sum (2) over all v € S — {s}, together with (1). We see that
. For every edge e inside S, both f(e) and —f(e) appear
. For every edge e from S to T, only f(e) appear
. For every edge e from T to S, only —f(e) appear

Lemma is thus proved.

22

Flow and Cuts
Def: The capacity of the cut (S,7) is ¢(S,T) = Y¢ from s to 7 €(€)

Claim: For any flow f and any s-t cut (S,T), |f| < c(S,T).
Proof:
fl=) f@- D f@
efromStoT efromTtoS
<) f@s) d(@=cET)
efromStoT efromStoT

S
/ 15

15

10

Capacity = 10 + 8 + 10
=28

23

Correctness of Ford-Fulkerson Algorithm

Max-Flow min-cut theorem: Let f be any flow. Then the following three
statements are equivalent:

(1) f is a maximum flow.

(2) The residual graph G; has no path from s to t.

(3) If| = ¢(S,T) for some s-t cut (S, T).

Proof: (1) = (2), or =(2) = —(1): If there is a path in G¢, we can improve f.

(2) = (3):
Need to find an s-t cut (S, T) such that |f| = ¢(S,T)
. By net flow lemma, |f| = f(S,T), so must find a cut such that
- all edges e from S to T are full, i.e., f(e) = c(e)
- all edges e from T to S are empty, i.e., f(e) =0
. Consider S = set of all nodes reachable from s in G¢.
. S cannot include t due to (2), so it is a valid s-t cut
. And this cut must meet the two conditions above!

(3) = (1): By the claim from last page.

24

Ford-Fulkerson: Running time analysis
Q: Which path to choose in the residual graph?

A: Ford-Fulkerson doesn't specify.
. The choice does not affect correctness
. But it does affect running time

Claim: When all capacities are integers, Ford-Fulkerson takes at most
|f*| iterations, where f* is a maximum flow.

Proof: Each iteration increases |f| by at least 1.

Bad example:

(a) (b) (c)

Note: When capacities are irrational numbers, the algorithm may never
terminate!

25

Edmonds-Karp: Choosing the shortest augmenting path

Idea: Choose the shortest (in terms of # edges) path in residual graph
. Can be done in O(E) time using BFS.

Theorem: If we always choose the shortest path in the residual graph
to augment the flow, then the Ford-Fulkerson algorithm terminates in
O(VE) iterations.

Proof: See textbook (not required).

Corollary: The Ford-Fulkerson algorithm can be implemented to run in
O(VE?) time.

More advanced algorithms
. Push-relabel algorithms, O(VZE) time, and perform well in practice
(see textbook for details)
. Theoretically best algorithm: O(VE) time
[King, Rao, Tarjan, 1994] [Orlin, 2013]

26

Applications of Max Flow

Edge Disjoint Paths
Disjoint path problem. Given a directed graph G = (V,E) and two nodes
s and t, find the max number of edge-disjoint s-t paths.
Def. Two paths are edge-disjoint if they have no edge in common.

Application: Communication networks.

28

Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.

lﬁglf\l
<\g 1\1/>

Theorem. Max number edge-disjoint s-t paths equals max flow value.

Proof. <
. Suppose there are k edge-disjoint paths P, ..., Py.
. Set f(e) = 1if e participates in some path P;; else set f(e) = 0.
. Since paths are edge-disjoint, f is a flow of value k.

29

Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.

|
|1 I
\& \o/
Proof. >

. Let f be a max flow in G’ of value k computed by Ford-Fulkerson
. f(e) =1 or 0 for every edge e (integrality property).
. Consider any edge (s,u) with f(s,u) = 1.
- By conservation, there exists an edge (u, v) with f(u,v) =1
- Continue to find the next unused edge out of v until reaching t.
. After finding one path, flow value decreases by 1.
. Repeat the process k times to find k edge-disjoint paths.
. The proof above also provides an algorithm.

30

Maximum Bipartite Matching

Input: An undirected, connected, bipartite graph G = (L UR,E).
Def: M € E is a matching if each node appears in at most edge in M.
Goal: Find a max cardinality matching.

Applications: Assign jobs to people, tasks to machines, etc.

® @

@ @) matching
1-2' 3-1' 4-5'

) @)

el

@ ®

31

Maximum Bipartite Matching

Input: An undirected, connected, bipartite graph G = (L UR,E).
Def: M € E is a matching if each node appears in at most edge in M.
Goal: Find a max cardinality matching.

Applications: Assign jobs to people, tasks to machines, etc.

maX matching
1-1' 2-2', 3-3"' 4-4'

32

From bipartite matching to flow

Max flow formulation.
. Create directed graph G' = (LUR U {s,t},E").
. Direct all edges from L to R, and assignh capacity co.
. Add source s, and unit capacity edges from s to each node in L.
. Add target t, and unit capacity edges from each node in R to t.

1
1" _@

@
@

\

: @ _ -
G / ZQ\
7 &
@)
5

33

Maximum Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'.

Pf. <
. Given max matching M of cardinality k.
. Consider flow f that sends 1 unit along each of the k paths.
. fisa flow, and has cardinality k.

(1) 00 1
1 1
2 2
o ; o—

34

Maximum Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow in G'.

Pf. >
. Let f be a max flow in G’ of value k computed by Ford-Fulkerson
. f(e) =1o0r 0 for every edge e.
. Consider M = set of edges from L to R with f(e) = 1.
- each node in L and R participates in at most one edge in M

_|M|:k
(1) 00 1
1 1
2 2
3 -3) t

35

Maximum Bipartite matching: Running time

Running time: O(VE)
. Each iteration increases |f| by at least 1.
- <V)2
. Each iteration takes O(E) time.

Note: This holds no matter which augmenting path to choose.

Specialized algorithms
. O(WVE) [Hopcroft-Karp, 1973]
. 0(V%37) using matrix multiplication [Mucha-Sankowski, 2004]
. O(E'®/7) [Madry, 2013]
. But in practice, they are not as good as using max flow algorithms.

36

Circulation with Demands

Input: A directed connected graph G = (V,E), where
. every edge e € E has a capacity c(e);
. a number of source vertices sy, s,, ..., each with a supply of sup(s;) and
a number of target vertices ty,t,, ..., each with a demand of dem(t;):

- 2 sup(s;) = Y dem(t;)

Output: A flow f that meets capacity and conservation conditions, and
- At each source vertex s;, Y. outofs; f(€) = Zeintos, f(€) < sup(sy);
- At each target vertex t;, Xeintor, f(€) — Zeoutort; S (€) = dem(s;).

8 6 — supply
6 1 :
4 7 7 9
10 6 6 4 2 9
7 3
3 v 0 4 . 13
8 4\

I capacity demand

flow

37

Solving Circulation with Demands using Max Flow

Algorithm:
. Add a "super source” s and a "super target” t.
. Add an edge from s to each s; with capacity sup(s;).
. Add an edge from each t; to t with capacity dem(t;).
. Compute the max flow f.
. If |f| = X;dem(t;), then return f; else return "no solution”.

6 — supply

demand

38

Baseball Elimination

Teqm Wms To plq Remaining Agains‘r = 1ij
- 1 1 0]

2
3
3
2

O NN NN W

Rule: Order teams by the number of wins.

Q: Does Team 4 still have a chance to finish in the first place (tie is
OK)?

A: No, obviously.

39

Baseball Elimination

To pla Remaining Against = r;;

3 2

2 3 1 - 1 1
2 3 1 1 - 1
1 2 o) 1 1 -

Q: Does Team 4 still have a chance to finish in the first place (tie is
OK)?

A: No, because
. Team 4 has to win both remaining games against feam 2 and 3.
. Team 1 has 1o lose both remaining games against feam 2 and 3.
. Then 2 and 3 will both have 3 wins.
. The game between team 2 and 3 will give one of them one more win.

Suppose you heed to do this for MLB / Premier League...

40

Baseball Elimination: Formal Definition

Input:
- nteams: 1,2,...,n
. One particular team, say n (without loss of generality)
. Team i has won w; games already
. Team i and j still need to play r;; games, r;; = 0 or 1.
. Team i has a total of r; = ¥;7;; games to play

Output:
. "Yes", if there is an outcome for each remaining game such that
team n finishes with the most wins (tie is OK).
- "No", if no such possibilities.

Brute-force algorithm:
. For each remaining game, consider two possible outcomes.
- Try all 2" possible combinations, where r = ¥, :7;;

41

Baseball Elimination: Max Flow Formulation

Can team n finish with most wins?
. Assume team n wins all remaining games = w,, + r;,, wins.
. All other teams must have < w,, + r;, wins.

Flow network construction:
. A source s and a target t
. A node for each remaining game (i,); and an edge from s to it with
capacity 1
. A node for each feam i = 1,2,..,n — 1; and an edge from it to t with
capacity wy, + 1, — w;
. Game node (i,j) has edges to team node i and j, with capacity 1

O

H— —@< @—R vy ——(®

\ team 2 is allowed
@

to win this many
more games
game nodes team nodes

42

Baseball Elimination: Max Flow Formulation

Claim: There is a way for team n fo finish in the first place iff the max
flow has value r = 3; ; 1;;.

Proof: "=": Suppose there is an outcome for each remaining game such
that team n finishes the first. First set f(s, (i,j)) = 1 for all (i, j).

For each remaining game (i, j):
. if i wins, set f((i,j),i) = 1 and f((i,)),j) = 0;
. if jwins, set £((i,/),j) =1 and £((i,)),i) = 0.

Team i wins < w,, + 1, — w; games, so it can send all incoming flow to t.

O

H— —@< @—R vy ——(®

\ team 2 is allowed
@

to win this many
more games
game nodes team nodes

43

Baseball Elimination: Max Flow Formulation
Proof: "<": Suppose the max flow f has |f| = r. It must saturate all
edges out of s.

Look at each game node (i, j). Exactly one of its outgoing edges must
have 1 unit of flow (integrality property):

. If £((i,j).i) =1, let i win the game;

- If f((i,),j) =1, let j win the game.

Team node i receives < w,, + 1, — w; units of flow, each corresponding
to one win, so it cannot beat team n.

O

H— —@< @—R vy ——(®

\ team 2 is allowed
@

to win this many
more games
game nodes team nodes

44

Baseball Elimination: Extensions

Q: What if r;; can be more than 1?

Q: Can this be used for football (soccer) leagues?
. Using the old rule: Winner takes 2 points, loser O point; each team
gets 1 point in case of a tie.

45

