Lecture 17: Shortest Paths

Shortest Path Problem

Input:

- Directed graph G = (V, E).
 - An undirected edge is considered as two directed edges.
- Source s, destination t.
- Weight w(e) = length of edge e.

Shortest path problem: Find the shortest path from s to t.

Single-source shortest path: Find the shortest path from s to every node.

Def: The distance from u to v is the length of the shortest path from u to v, denoted as $\delta(u,v)$

$$\delta(s,t) = 9 + 23 + 2 + 16$$

= 50.

Key property of shortest path: Subpath optimality

Lemma: Let P = (s, ..., u, ..., t) be the shortest path from s to t. Then the subpaths (s, ..., u) and (u, ... t) must also be shortest paths from s to u and from u to t, respectively.

Pf: (by contradiction)

- Suppose the subpath (s, ..., u) is not the shortest, and there is another path P' from s to u that is shorter.
- Then we can replace the subpath from s to u with P', which will make the whole path from s to t shorter.
- This contradicts with the fact that the original path from s to t is the shortest.
- Same proof works for the subpath from u to t.

Note: This holds for any subpath.

Two easy variants

If all weights are 1 (or all weights are equal):

• Can be solved by BFS in $\Theta(V+E)$ time.

If the graph is a DAG:

- Can use dynamic programming
- By subpath optimality, we have

$$\delta(s,v) = \min_{u,(u,v)\in E} \{\delta(s,u) + w(u,v)\}$$

• We can compute all the $\delta(s,v)$'s in the topological order of nodes.

Shortest path in a DAG

```
DAG-Shortest-Path (G,s)
topologically sort the vertices of G
reverse every edge of G
for each vertex v \in V
v.d \leftarrow \infty
v.p \leftarrow nil
s.d \leftarrow 0
for each vertex v in topological order
for each vertex u \in Adj[v]
if v.d > u.d + w(u,v) then
v.d \leftarrow u.d + w(u,v)
v.p \leftarrow u
Relax (u,v)
```

A nice trick to avoid reversing all edges:

- v.d starts with ∞ .
- Incoming edges do not have to be evaluated together.
- We are OK as long as all edges have been "relaxed".
 - Here "relax" means this edge no longer needs to be considered.

Shortest path in a DAG: Final algorithm

```
DAG-Shortest-Path (G,s)
topologically sort the vertices of G
for each vertex v \in V
v.d \leftarrow \infty
v.p \leftarrow nil
s.d \leftarrow 0
for each vertex u in topological order
for each vertex v \in Adj[u]
if \ v.d > u.d + w(u,v) \text{ then}
v.d \leftarrow u.d + w(u,v)
v.p \leftarrow u
Relax (u,v)
```

Running time: $\Theta(V+E)$

Note:

- Can find the actual shortest path by tracing the parent pointers.
- If we just want to find the shortest path from s to t, can stop the algorithm when u=t. But this does not reduce the running time asymptotically.

Shortest path in a DAG: Example

Longest Paths in a DAG

Modified recurrence:

• Let d(s, v) be the longest distance from s to v.

$$d(s,v) = \max_{u,(u,v) \in E} \{d(s,u) + w(u,v)\}\$$

Q: What if we use nodes to model tasks, and edges to model the dependencies?

Shortest paths in a graph with cycles and nonnegative weights $Def: \delta(s, v) = minimum distance from s to v.$

Challenge: The same recurrence holds, but there is no order to compute the recurrence if the graph has cycles.

Dijkstra's algorithm.

- Maintain a set of explored nodes S for which we have $u.d = \delta(s,u)$. Initialize $S = \{s\}, s.d = 0, v.d = \infty$
- Key lemma: If all edges leaving S are relaxed, then $v.d = \delta(s, v)$, where v is the vertex in V S with the minimum v.d.
 - So this v can be added to S, and we then repeat.

Dijkstra's Algorithm

```
Dijkstra(G,s):
for each v \in V do
      v.d \leftarrow \infty, v.p \leftarrow nil, v.color \leftarrow white
s,d \leftarrow 0
create a min priority queue Q on V with d as key
while 0 \neq \emptyset
      u \leftarrow \texttt{Extract-Min}(Q)
      u.color \leftarrow black
      for each v \in Adj[u] do
            if v.color = white and u.d + w(u,v) < v.d then
                  v.p \leftarrow u
                  v.d \leftarrow u.d + w(u.v)
                  Decrease-Key (Q, v, v, d)
```

Running time: $O(E \log V)$

- Very similar to Prim's algorithm with only one key difference
- Try to run both algorithms on the same graph to see the difference.

Dijkstra's Algorithm: Example

Note: All the shortest paths found by Dijkstra's algorithm form a tree (shortest-path tree).

Dijkstra's Algorithm: Correctness

Lemma. If $u.d = \delta(s, u)$ for all $u \in S$, and all edges leaving S are relaxed, we have $v.d = \delta(s, v)$, where v is the vertex with the minimum v.d in V - S.

Pf. (by contradiction)

- Suppose $v.d \neq \delta(s,v)$
 - Since v.d starts with ∞ , and whenever it's updated, we must have found a path with distance v.d. So we always have $v.d \ge \delta(s,v)$.
 - Thus it can only be $v.d > \delta(s, v)$.
- Consider the shortest path P from s to v.
 - Suppose $x \rightarrow y$ is the first edge on P that takes P out of S.
 - Since $x \in S$, we have $x \cdot d = \delta(s, x)$.
 - The edge $x \to y$ has been relaxed, so $y.d \le x.d + w(x,y)$.
 - P is shortest path, its subpath (s, ..., x, y) must also be shortest, so $x \cdot d + w(x, y) = \delta(s, y)$.
 - $\delta(s, y) \leq \delta(s, v)$, assuming nonnegative weights.
 - Thus, $v.d > \delta(s,v) \ge \delta(s,y) = x.d + w(x,y) \ge y.d$, contradicting with the fact that v.d is the smallest in V-S.

Shortest paths on graphs with negative-weight edges

Shortest path problem. Given a directed graph G = (V, E), with edge weights that may be both positive and negative, find shortest path from node s to every other node.

Applications.

- Road network: scenic roads
- Financial transactions: edges may be have positive or negative costs (profit)

Shortest Paths with Negative Weights: Failed Attempts

Dijkstra. Can fail if negative edge costs.

Re-weighting. Adding a constant to every edge weight can fail.

Shortest Paths: Negative Weight Cycles

Negative weight cycle.

Note. The shortest path problem is not be well defined if there are negative-weight cycles in the graph. So will assume no negative cycles.

Dynamic Programming

Def. v.d[i] = length of shortest path from s to v using up to i edges.

Recurrence:

Suppose (u, v) is the last edge of the shortest path from s to v. The subpath from s to u must also be shortest, which consists of at most i-1 edges, followed by (u, v).

$$v. d[i] = \min_{u,(u,v) \in E} \{v. d[i-1] + w(u,v)\}$$

 $v. d[0] = \infty$
 $s. d[i] = 0$, for all i

Remark. v.d[n-1] = length of the shortest path from s to v, since no shortest path can have n edges or more.

Dynamic Programming: Implementation

Analysis. $\Theta(VE)$ time, $\Theta(V^2)$ space.

Improvements and simplifications

Improvements.

- Use only one v.d instead of v.d[i]
 - After the *i*-th iteration, $v.d \le v.d[i]$
 - This may make things even better (faster convergence).
- Use only one v.p instead of v.p[i]
 - v.p is always the last stop to v on the shortest path found so far.
- No need to check edges of the form (u, v) unless u.d changed in previous iteration.
- If no v.d has changed in an iteration, terminate the algorithm.

Bellman-Ford: Efficient Implementation

```
\begin{array}{c} {\bf Bellman-Ford}\,(G,s):\\ {\bf for\ each\ node\ }v\in V\\ v.d\leftarrow\infty,v.p\leftarrow nil\\ s.d\leftarrow0\\ {\bf for\ }i\leftarrow1\ {\bf to\ }n-1\\ {\bf for\ each\ node\ }u\in V\\ {\bf if\ }u.d\ {\bf is\ changed\ in\ previous\ iteration\ then}\\ {\bf for\ each\ }v\in Adj[u]\\ {\bf if\ }u.d+w(u,v)< v.d\ {\bf then}\\ v.d\leftarrow u.d+w(u,v)\\ v.p\leftarrow u\\ {\bf if\ no\ }v.d\ {\bf changed\ in\ this\ iteration\ then\ terminate} \end{array}
```

Analysis.

- O(VE) time in the worst case, but can be much faster in practice
- O(V) space.

Remark:

- Can be run in parallel.
- Used on massive graphs (even if no negative edges).
- Can also detect whether there is a negative cycle (see textbook).

All-Pairs Shortest Paths

Input:

- Directed graph G = (V, E).
- Weight w(e) = length of edge e.

Output:

- $\delta(u, v)$, for all pairs of nodes u, v.
- A data structure from which the shortest path from u to v can be extracted efficiently, for any pair of nodes u,v
 - Note: Storing all shortest paths explicitly for all pairs requires $O(V^3)$ space.

Graph representation

- Assume adjacency matrix
 - w(u, v) can be extracted in O(1) time.
 - w(u,u) = 0, $w(u,v) = \infty$ if there is no edge from u to v.
- If the graph is stored in adjacency lists format, can convert to adjacency matrix in $O(V^2)$ time.

Using previous algorithms

When there are no negative cost edges

- Apply Dijkstra's algorithm to each vertex (as the source).
- Recall that Dijkstra algorithm runs in $O(E \log V)$
- This gives an $O(VE \log V)$ -time algorithm
- If the graph is dense, this is $O(n^3 \log n)$.

When negative-weight edges are present

- Run the Bellman-Ford algorithm from each vertex.
- $O(V^2E)$ time, which is $O(n^4)$ for dense graphs.

Dynamic Programming: Solution 1

Def: $d_{ij}^{(m)} = \text{length of the shortest path from } i \text{ to } j \text{ that contains at most } m \text{ edges.}$

• Use $D^{(m)}$ to denote the matrix $\left[d_{ij}^{(m)}\right]$.

Recurrence: (Essentially the same as in Bellman-Ford) $d_{ij}^{(m)} = \min_{1 \leq k \leq n} \{d_{ik}^{(m-1)} + w(k,j)\}$ $d_{ij}^{(1)} = w(i,j)$

Goal: $D^{(n-1)}$, since no shortest path can have n edges or more.

```
\begin{split} \frac{\text{Slow-All-Pairs-Shortest-Paths}\left(G\right):}{d_{ij}^{(1)} = w(i,j) \text{ for all } 1 \leq i,j \leq n} \\ \text{for } m \leftarrow 2 \text{ to } n-1 \\ & \text{let } D^{(m)} \text{ be a new } n \times n \text{ matrix} \\ \text{for } i \leftarrow 1 \text{ to } n \\ & \text{for } j \leftarrow 1 \text{ to } n \\ & d_{ij}^{(m)} \leftarrow \infty \\ & \text{for } k \leftarrow 1 \text{ to } n \\ & \text{if } d_{ik}^{(m-1)} + w(k,j) < d_{ij}^{(m)} \text{ then } d_{ij}^{(m)} \leftarrow d_{ik}^{(m-1)} + w(k,j) \end{split} return D^{(n-1)}
```

Example

Analysis:

- Analysis: $0(n^4) \text{ time}$ $0(n^3) \text{ space, can be improved to}$ $O(n^2)$

$$L^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad L^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0 \end{pmatrix}$$

$$L^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0 \end{pmatrix}$$

$$L^{(3)} = \begin{pmatrix} 0 & 3 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad L^{(4)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$L^{(4)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

Dynamic Programming: Solution 2

Observation:

- To compute $d_{ij}^{(m)}$, instead of looking at the last stop before j, we look at the middle point.
- This can cut down the problem size by half.

New recurrence:

$$d_{ij}^{(2s)} = \min_{1 \le k \le n} \{d_{ik}^{(s)} + d_{kj}^{(s)}\}$$

Algorithm:

- We can calculate $D^{(1)}, D^{(2)}, D^{(4)}, D^{(8)}, ...$
- Each matrix takes $O(n^3)$ time, total time $O(n^3 \log n)$.

Q: We will overshoot $D^{(n-1)}$?

A: It's OK. Since $D^{(n')}$, n' > n-1 has the shortest paths with up to n' edges, it will not miss any shortest path with up to n-1 edges.

• Actually, $D^{(n\prime)}=D^{(n-1)}$ for any $n^\prime>n-1$, since no shortest path has more than n-1 edges.

Dynamic Programming: Solution 3 (Floyd-Warshall)

Def: $d_{ij}^{(k)} = \text{length of the shortest path from } i \text{ to } j \text{ that such that all intermediate vertices on the path (if any) are in the set <math>\{1,2,\ldots,k\}$.

Initially: $d_{ij}^{(0)} = w(i,j)$

Goal: $D^{(n)}$

Recurrence

$$d_{ij}^{(k)} = \min\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\}$$

To compute $d_{ij}^{(k)}$, there are two cases:

- Case 1: k is not a vertex on the shortest path from i to j, then the path uses only vertices in $\{1,2,\ldots,k-1\}$.
- Case 2: k is an intermediate node on the shortest path from i to j, then the path can be divided into a subpath from i to k and a subpath from k to j. Both subpaths use only vertices in $\{1,2,\ldots,k-1\}$

The Floyd-Warshall Algorithm

```
\begin{split} \frac{\textbf{Floyd-Warshall}\left(G\right):}{d_{ij}^{(0)} = w(i,j) \text{ for all } 1 \leq i,j \leq n \\ \textbf{for } k \leftarrow 1 \text{ to } n \\ & \textbf{let } D^{(k)} \text{ be a new } n \times n \text{ matrix} \\ \textbf{for } i \leftarrow 1 \text{ to } n \\ & \textbf{for } j \leftarrow 1 \text{ to } n \\ & \textbf{if } d_{ik}^{(k-1)} + d_{kj}^{(k-1)} < d_{ij}^{(k-1)} \text{ then } \\ & d_{ij}^{(k)} \leftarrow d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \\ & \textbf{else} \\ & d_{ij}^{(k)} \leftarrow d_{ij}^{(k-1)} \end{split}
```

Analysis:

- $O(n^3)$ time
- $O(n^3)$ space, but can be improved to $O(n^2)$

Surprising discovery: If we just drop all the superscripts, i.e., the algorithm just uses one $n \times n$ array D, the algorithm still works! (why?)

The Floyd-Warshall Algorithm: Final Version

```
\begin{aligned} & \underline{\textbf{Floyd-Warshall}(G):} \\ & d_{ij} = w(i,j) \text{ and } intermed[i,j] \leftarrow 0 \text{ for all } 1 \leq i,j \leq n \\ & \text{for } k \leftarrow 1 \text{ to } n \\ & \text{for } i \leftarrow 1 \text{ to } n \\ & \text{ for } j \leftarrow 1 \text{ to } n \\ & & \text{ if } d_{ik} + d_{kj} < d_{ij} \text{ then } \\ & & d_{ij} \leftarrow d_{ik} + d_{kj} \\ & & intermed[i,j] \leftarrow k \end{aligned}
```

Analysis:

- $O(n^3)$ time
- $O(n^2)$ space

The intermed[i,j] array records one intermediate node on the shortest path from i to j.

• It is nil if the shortest path does not pass any intermediate nodes.

Extracting Shortest Paths

```
Path(i,j):
if intermed[i,j] = nil then
   output (i,j)
else
   Path(i,intermed[i,j])
   Path(intermed[i,j],j)
```


Running time: O(length of the shortest path)