
Lecture 17: Shortest Paths

Shortest Path Problem

Input:

 Directed graph 𝐺 = (𝑉, 𝐸).

– An undirected edge is considered as two directed edges.

 Source 𝑠, destination 𝑡.

 Weight 𝑤 𝑒 = length of edge 𝑒.

Shortest path problem: Find the shortest path from 𝑠 to 𝑡.

Single-source shortest path: Find the shortest path from 𝑠 to every node.

Def: The distance from 𝑢 to 𝑣 is the length of the shortest path from 𝑢

to 𝑣, denoted as 𝛿(𝑢, 𝑣)

2

𝛿(𝑠, 𝑡) = 9 + 23 + 2 + 16
= 50.

s

3

t

2

6

7

4
5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6

Key property of shortest path: Subpath optimality

Lemma: Let 𝑃 = (𝑠, … , 𝑢, . . , 𝑡) be the shortest path from 𝑠 to 𝑡. Then

the subpaths (𝑠, … , 𝑢) and (𝑢, . . 𝑡) must also be shortest paths from 𝑠 to

𝑢 and from 𝑢 to 𝑡, respectively.

Pf: (by contradiction)

 Suppose the subpath (𝑠, … , 𝑢) is not the shortest, and there is

another path 𝑃′ from 𝑠 to 𝑢 that is shorter.

 Then we can replace the subpath from 𝑠 to 𝑢 with 𝑃′, which will

make the whole path from 𝑠 to 𝑡 shorter.

 This contradicts with the fact that the original path from 𝑠 to 𝑡 is

the shortest.

 Same proof works for the subpath from 𝑢 to 𝑡.

Note: This holds for any subpath.

3

s t

u

Two easy variants

If all weights are 1 (or all weights are equal):

 Can be solved by BFS in Θ(𝑉 + 𝐸) time.

If the graph is a DAG:

 Can use dynamic programming

 By subpath optimality, we have

𝛿 𝑠, 𝑣 = min
𝑢, 𝑢,𝑣 ∈𝐸

{𝛿 𝑠, 𝑢 + 𝑤(𝑢, 𝑣)}

 We can compute all the 𝛿(𝑠, 𝑣)’s in the topological order of nodes.

4

u

v

Shortest path in a DAG

A nice trick to avoid reversing all edges:

 𝑣. 𝑑 starts with ∞.

 Incoming edges do not have to be evaluated together.

 We are OK as long as all edges have been “relaxed”.

– Here “relax” means this edge no longer needs to be considered.

5

DAG-Shortest-Path(𝐺, 𝑠)

topologically sort the vertices of 𝐺

reverse every edge of 𝐺

for each vertex 𝑣 ∈ 𝑉

𝑣. 𝑑 ← ∞

𝑣. 𝑝 ← 𝑛𝑖𝑙

𝑠. 𝑑 ← 0

for each vertex 𝑣 in topological order

for each vertex 𝑢 ∈ 𝐴𝑑𝑗[𝑣]

if 𝑣. 𝑑 > 𝑢. 𝑑 + 𝑤(𝑢, 𝑣) then

𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤(𝑢, 𝑣)

𝑣. 𝑝 ← 𝑢

u

v

Relax(𝑢, 𝑣)

Shortest path in a DAG: Final algorithm

Running time: Θ(𝑉 + 𝐸)

Note:

 Can find the actual shortest path by tracing the parent pointers.

 If we just want to find the shortest path from 𝑠 to 𝑡, can stop the

algorithm when 𝑢 = 𝑡. But this does not reduce the running time

asymptotically.

6

DAG-Shortest-Path(𝐺, 𝑠)

topologically sort the vertices of 𝐺

for each vertex 𝑣 ∈ 𝑉

𝑣. 𝑑 ← ∞

𝑣. 𝑝 ← 𝑛𝑖𝑙

𝑠. 𝑑 ← 0

for each vertex 𝑢 in topological order

for each vertex 𝑣 ∈ 𝐴𝑑𝑗[𝑢]

if 𝑣. 𝑑 > 𝑢. 𝑑 + 𝑤(𝑢, 𝑣) then

𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤(𝑢, 𝑣)

𝑣. 𝑝 ← 𝑢

Relax(𝑢, 𝑣)

Shortest path in a DAG: Example

7

Longest Paths in a DAG

8

Modified recurrence:

 Let 𝑑(𝑠, 𝑣) be the longest distance from 𝑠 to 𝑣.

𝑑 𝑠, 𝑣 = max
𝑢, 𝑢,𝑣 ∈𝐸

{𝑑 𝑠, 𝑢 + 𝑤(𝑢, 𝑣)}

Q: What if we use nodes to model tasks, and edges to model the

dependencies?

Shortest paths in a graph with cycles and nonnegative weights

Def: 𝛿 𝑠, 𝑣 = minimum distance from 𝑠 to 𝑣.

Challenge: The same recurrence holds, but there is no order to compute

the recurrence if the graph has cycles.

Dijkstra's algorithm.

 Maintain a set of explored nodes 𝑆 for which we have 𝑢. 𝑑 = 𝛿(𝑠, 𝑢).

Initialize 𝑆 = {𝑠}, 𝑠. 𝑑 = 0, 𝑣. 𝑑 = ∞

 Key lemma: If all edges leaving 𝑆 are relaxed, then 𝑣. 𝑑 = 𝛿(𝑠, 𝑣),

where 𝑣 is the vertex in 𝑉 − 𝑆 with the minimum 𝑣. 𝑑.

– So this 𝑣 can be added to 𝑆, and we then repeat.

9

s

v

u

S

minimum 𝑣. 𝑑 among
nodes not in 𝑆

Dijkstra’s Algorithm

Running time: 𝑂(𝐸 log𝑉)

 Very similar to Prim’s algorithm with only one key difference

 Try to run both algorithms on the same graph to see the

difference.

10

Dijkstra(𝐺, 𝑠):

for each 𝑣 ∈ 𝑉 do

𝑣. 𝑑 ← ∞,𝑣. 𝑝 ← 𝑛𝑖𝑙,𝑣. 𝑐𝑜𝑙𝑜𝑟 ← 𝑤ℎ𝑖𝑡𝑒

𝑠. 𝑑 ← 0

create a min priority queue 𝑄 on 𝑉 with 𝑑 as key

while 𝑄 ≠ ∅

𝑢 ← Extract-Min(𝑄)

𝑢. 𝑐𝑜𝑙𝑜𝑟 ← 𝑏𝑙𝑎𝑐𝑘

for each 𝑣 ∈ 𝐴𝑑𝑗[𝑢] do

if 𝑣. 𝑐𝑜𝑙𝑜𝑟 = 𝑤ℎ𝑖𝑡𝑒 and 𝑢. 𝑑 + 𝑤(𝑢, 𝑣) < 𝑣. 𝑑 then

𝑣. 𝑝 ← 𝑢

𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤 𝑢, 𝑣

Decrease-Key(𝑄, 𝑣, 𝑣. 𝑑)

Dijkstra’s Algorithm: Example

11

Note: All the shortest paths found by Dijkstra’s algorithm form

a tree (shortest-path tree).

Dijkstra's Algorithm: Correctness

Lemma. If 𝑢. 𝑑 = 𝛿(𝑠, 𝑢) for all 𝑢 ∈ 𝑆, and all edges leaving 𝑆 are relaxed, we

have 𝑣. 𝑑 = 𝛿(𝑠, 𝑣), where 𝑣 is the vertex with the minimum 𝑣. 𝑑 in 𝑉 − 𝑆.

Pf. (by contradiction)

 Suppose 𝑣. 𝑑 ≠ 𝛿(𝑠, 𝑣)

– Since 𝑣. 𝑑 starts with ∞, and whenever it’s updated, we must have found

a path with distance 𝑣. 𝑑. So we always have 𝑣. 𝑑 ≥ 𝛿(𝑠, 𝑣).

– Thus it can only be 𝑣. 𝑑 > 𝛿(𝑠, 𝑣).

 Consider the shortest path 𝑃 from 𝑠 to 𝑣.

– Suppose 𝑥 → 𝑦 is the first edge on 𝑃

that takes 𝑃 out of 𝑆.

– Since 𝑥 ∈ 𝑆, we have 𝑥. 𝑑 = 𝛿 𝑠, 𝑥 .

– The edge 𝑥 → 𝑦 has been relaxed, so 𝑦. 𝑑 ≤ 𝑥. 𝑑 + 𝑤(𝑥, 𝑦).

– 𝑃 is shortest path, its subpath (𝑠, … , 𝑥, 𝑦) must also be shortest, so

𝑥. 𝑑 + 𝑤 𝑥, 𝑦 = 𝛿(𝑠, 𝑦).

– 𝛿 𝑠, 𝑦 ≤ 𝛿(𝑠, 𝑣), assuming nonnegative weights.

– Thus, 𝑣. 𝑑 > 𝛿 𝑠, 𝑣 ≥ 𝛿 𝑠, 𝑦 = 𝑥. 𝑑 + 𝑤 𝑥, 𝑦 ≥ 𝑦. 𝑑, contradicting with the

fact that 𝑣. 𝑑 is the smallest in 𝑉 − 𝑆.

12

S

s

y

v

x
P

u

13

Shortest paths on graphs with negative-weight edges

Shortest path problem. Given a directed graph 𝐺 = (𝑉, 𝐸), with edge

weights that may be both positive and negative, find shortest path

from node 𝑠 to every other node.

Applications.

 Road network: scenic roads

 Financial transactions: edges may be have positive or negative costs

(profit)

s

3

t

2

6

7

4
5

10

18
-16

9

6

15 -8

30

20

44

16

11

6

19

6

14

Shortest Paths with Negative Weights: Failed Attempts

Dijkstra. Can fail if negative edge costs.

Re-weighting. Adding a constant to every edge weight can fail.

u

t

s v

2

1

3

-6

s t

2

3

2

-3

3

5 5

66

0

15

Shortest Paths: Negative Weight Cycles

Negative weight cycle.

Note. The shortest path problem is not be well defined if there are

negative-weight cycles in the graph. So will assume no negative cycles.

s t
C

w(C) < 0

-6

7

-4

16

Dynamic Programming

Def. 𝑣. 𝑑 𝑖 = length of shortest path from 𝑠 to 𝑣 using up to 𝑖 edges.

Recurrence:

 Suppose (𝑢, 𝑣) is the last edge of the shortest path from 𝑠 to 𝑣. The

subpath from 𝑠 to 𝑢 must also be shortest, which consists of at

most 𝑖 − 1 edges, followed by (𝑢, 𝑣).

𝑣. 𝑑 𝑖 = min
𝑢, 𝑢,𝑣 ∈𝐸

{𝑣. 𝑑 𝑖 − 1 + 𝑤(𝑢, 𝑣)}

𝑣. 𝑑 0 = ∞

𝑠. 𝑑 𝑖 = 0, for all 𝑖

Remark. 𝑣. 𝑑 𝑛 − 1 = length of the shortest path from 𝑠 to 𝑣, since no

shortest path can have 𝑛 edges or more.

17

Dynamic Programming: Implementation

Analysis. Θ 𝑉𝐸 time, Θ(𝑉2) space.

Shortest-Path(𝐺, 𝑠):
for each node 𝑣 ∈ 𝑉 do

for 𝑖 ← 0 to 𝑛 − 1 do

𝑣. 𝑑 𝑖 ← ∞
for 𝑖 ← 0 to 𝑛 − 1 do

𝑠. 𝑑 𝑖 ← 0
for 𝑖 ← 1 to 𝑛 − 1

for each edge 𝑢, 𝑣 ∈ 𝐸
if 𝑢. 𝑑 𝑖 − 1 + 𝑤 𝑢, 𝑣 < 𝑣. 𝑑[𝑖] then

𝑣. 𝑑 𝑖 ← 𝑢. 𝑑 𝑖 − 1 + 𝑤(𝑢, 𝑣)
𝑣. 𝑝 𝑖 ← 𝑢

18

Improvements and simplifications

Improvements.

 Use only one 𝑣. 𝑑 instead of 𝑣. 𝑑 𝑖

– After the 𝑖-th iteration, 𝑣. 𝑑 ≤ 𝑣. 𝑑 𝑖

– This may make things even better (faster convergence).

 Use only one 𝑣. 𝑝 instead of 𝑣. 𝑝 𝑖

– 𝑣. 𝑝 is always the last stop to 𝑣 on the shortest path found so far.

 No need to check edges of the form (𝑢, 𝑣) unless 𝑢. 𝑑 changed

in previous iteration.

 If no 𝑣. 𝑑 has changed in an iteration, terminate the algorithm.

19

Bellman-Ford: Efficient Implementation

Bellman-Ford(𝐺, 𝑠):
for each node 𝑣 ∈ 𝑉

𝑣. 𝑑 ← ∞,𝑣. 𝑝 ← 𝑛𝑖𝑙
𝑠. 𝑑 ← 0
for 𝑖 ← 1 to 𝑛 − 1

for each node 𝑢 ∈ 𝑉
if 𝑢. 𝑑 is changed in previous iteration then

for each 𝑣 ∈ 𝐴𝑑𝑗[𝑢]
if 𝑢. 𝑑 + 𝑤 𝑢, 𝑣 < 𝑣. 𝑑 then

𝑣. 𝑑 ← 𝑢. 𝑑 + 𝑤(𝑢, 𝑣)
𝑣. 𝑝 ← 𝑢

if no 𝑣. 𝑑 changed in this iteration then terminate

Analysis.

 𝑂 𝑉𝐸 time in the worst case, but can be much faster in practice

 𝑂(𝑉) space.

Remark:

 Can be run in parallel.

 Used on massive graphs (even if no negative edges).

 Can also detect whether there is a negative cycle (see textbook).

All-Pairs Shortest Paths

Input:

 Directed graph 𝐺 = (𝑉, 𝐸).

 Weight 𝑤 𝑒 = length of edge 𝑒.

Output:

 𝛿(𝑢, 𝑣), for all pairs of nodes 𝑢, 𝑣.

 A data structure from which the shortest path from 𝑢 to 𝑣 can be

extracted efficiently, for any pair of nodes 𝑢, 𝑣

– Note: Storing all shortest paths explicitly for all pairs requires

𝑂(𝑉3) space.

Graph representation

 Assume adjacency matrix

– 𝑤(𝑢, 𝑣) can be extracted in 𝑂(1) time.

– 𝑤 𝑢, 𝑢 = 0, 𝑤 𝑢, 𝑣 = ∞ if there is no edge from 𝑢 to 𝑣.

 If the graph is stored in adjacency lists format, can convert to

adjacency matrix in 𝑂(𝑉2) time.

20

Using previous algorithms

When there are no negative cost edges

 Apply Dijkstra’s algorithm to each vertex (as the source).

 Recall that Dijkstra algorithm runs in 𝑂(𝐸 log𝑉)

 This gives an 𝑂(𝑉𝐸 log𝑉)-time algorithm

 If the graph is dense, this is 𝑂 𝑛3 log 𝑛 .

When negative-weight edges are present

 Run the Bellman-Ford algorithm from each vertex.

 𝑂(𝑉2𝐸) time, which is 𝑂(𝑛4) for dense graphs.

21

Dynamic Programming: Solution 1

Def: 𝑑𝑖𝑗
(𝑚)

= length of the shortest path from 𝑖 to 𝑗 that contains at

most 𝑚 edges.
 Use 𝐷(𝑚) to denote the matrix 𝑑𝑖𝑗

𝑚 .

Recurrence: (Essentially the same as in Bellman-Ford)
𝑑𝑖𝑗
(𝑚)

= min
1≤𝑘≤𝑛

{𝑑𝑖𝑘
(𝑚−1)

+ 𝑤(𝑘, 𝑗)}

𝑑𝑖𝑗
(1)

= 𝑤(𝑖, 𝑗)

Goal: 𝐷(𝑛−1), since no shortest path can have 𝑛 edges or more.

22

Slow-All-Pairs-Shortest-Paths(𝐺):

𝑑𝑖𝑗
(1)

= 𝑤(𝑖, 𝑗) for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛

for 𝑚 ← 2 to 𝑛 − 1

let 𝐷(𝑚) be a new 𝑛 × 𝑛 matrix

for 𝑖 ← 1 to 𝑛
for 𝑗 ← 1 to 𝑛

𝑑𝑖𝑗
(𝑚)

← ∞

for 𝑘 ← 1 to 𝑛

if 𝑑𝑖𝑘
(𝑚−1)

+ 𝑤 𝑘, 𝑗 < 𝑑𝑖𝑗
(𝑚)

then 𝑑𝑖𝑗
(𝑚)

← 𝑑𝑖𝑘
(𝑚−1)

+ 𝑤 𝑘, 𝑗

return 𝐷(𝑛−1)

Example

Analysis:

 𝑂 𝑛4 time

 𝑂 𝑛3 space, can be improved to

𝑂 𝑛2

23

Dynamic Programming: Solution 2

Observation:

 To compute 𝑑𝑖𝑗
(𝑚), instead of looking at the last stop before 𝑗, we

look at the middle point.

 This can cut down the problem size by half.

New recurrence:
𝑑𝑖𝑗
(2𝑠)

= min
1≤𝑘≤𝑛

{𝑑𝑖𝑘
(𝑠)

+ 𝑑𝑘𝑗
(𝑠)
}

Algorithm:

 We can calculate 𝐷(1), 𝐷(2), 𝐷(4), 𝐷(8), …

 Each matrix takes 𝑂 𝑛3 time, total time 𝑂(𝑛3 log 𝑛).

Q: We will overshoot 𝐷(𝑛−1)?

A: It’s OK. Since 𝐷(𝑛′), 𝑛′ > 𝑛 − 1 has the shortest paths with up to 𝑛′

edges, it will not miss any shortest path with up to 𝑛 − 1 edges.

 Actually, 𝐷(𝑛′) = 𝐷(𝑛−1) for any 𝑛′ > 𝑛 − 1, since no shortest path has

more than 𝑛 − 1 edges.

24

Dynamic Programming: Solution 3 (Floyd-Warshall)

Def: 𝑑𝑖𝑗
(𝑘)

= length of the shortest path from 𝑖 to 𝑗 that such that all

intermediate vertices on the path (if any) are in the set {1,2, … , 𝑘}.

Initially: 𝑑𝑖𝑗
0
= 𝑤(𝑖, 𝑗)

Goal: 𝐷(𝑛)

25

Recurrence

𝑑𝑖𝑗
(𝑘)

= min{𝑑𝑖𝑗
𝑘−1

, 𝑑𝑖𝑘
𝑘−1

+ 𝑑𝑘𝑗
(𝑘−1)

}

To compute 𝑑𝑖𝑗
(𝑘), there are two cases:

 Case 1: 𝑘 is not a vertex on the shortest path from 𝑖 to 𝑗, then the

path uses only vertices in 1,2, … , 𝑘 − 1 .

 Case 2: 𝑘 is an intermediate node on the shortest path from 𝑖 to 𝑗,

then the path can be divided into a subpath from 𝑖 to 𝑘 and a

subpath from 𝑘 to 𝑗. Both subpaths use only vertices in {1,2, … , 𝑘 − 1}

26

The Floyd-Warshall Algorithm

Analysis:

 𝑂 𝑛3 time

 𝑂 𝑛3 space, but can be improved to 𝑂 𝑛2

Surprising discovery: If we just drop all the superscripts, i.e., the

algorithm just uses one 𝑛 × 𝑛 array 𝐷, the algorithm still works! (why?)

27

Floyd-Warshall(𝐺):

𝑑𝑖𝑗
(0)

= 𝑤(𝑖, 𝑗) for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛

for 𝑘 ← 1 to 𝑛

let 𝐷(𝑘) be a new 𝑛 × 𝑛 matrix

for 𝑖 ← 1 to 𝑛
for 𝑗 ← 1 to 𝑛

if 𝑑𝑖𝑘
(𝑘−1)

+ 𝑑𝑘𝑗
(𝑘−1)

< 𝑑𝑖𝑗
(𝑘−1)

then

𝑑𝑖𝑗
(𝑘)

← 𝑑𝑖𝑘
(𝑘−1)

+ 𝑑𝑘𝑗
(𝑘−1)

else

𝑑𝑖𝑗
(𝑘)

← 𝑑𝑖𝑗
(𝑘−1)

return 𝐷(𝑛)

The Floyd-Warshall Algorithm: Final Version

Analysis:

 𝑂 𝑛3 time

 𝑂 𝑛2 space

The 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑[𝑖, 𝑗] array records one intermediate node on the shortest

path from 𝑖 to 𝑗.

 It is 𝑛𝑖𝑙 if the shortest path does not pass any intermediate nodes.

28

Floyd-Warshall(𝐺):

𝑑𝑖𝑗 = 𝑤(𝑖, 𝑗) and 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑 𝑖, 𝑗 ← 0 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛
for 𝑘 ← 1 to 𝑛

for 𝑖 ← 1 to 𝑛
for 𝑗 ← 1 to 𝑛

if 𝑑𝑖𝑘 + 𝑑𝑘𝑗 < 𝑑𝑖𝑗 then

𝑑𝑖𝑗 ← 𝑑𝑖𝑘 + 𝑑𝑘𝑗
𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑 𝑖, 𝑗 ← 𝑘

return 𝐷

Extracting Shortest Paths

Example:

Running time: O(length of the shortest path)

29

Path(𝑖, 𝑗):
if 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑 𝑖, 𝑗 = 𝑛𝑖𝑙 then

output (𝑖, 𝑗)
else

Path(𝑖, 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑[𝑖, 𝑗])
Path(𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑 𝑖, 𝑗 , 𝑗)

Path(2,3)

Path(6,3)Path(2,6)

Path(4,3)Path(6,4)Path(2,5) Path(5,6)

𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑[2,3] = 6

𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑[2,6] = 5

Output (2,5) Output (5,6)

𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑[6,3] = 4

Output (6,4) Output (4,3)

