Lecture 17: Shortest Paths

Shortest Path Problem

Input:
. Directed graph G = (V,E).
- An undirected edge is considered as two directed edges.
. Source s, destination t.
. Weight w(e) = length of edge e.

Shortest path problem: Find the shortest path from s to t.
Single-source shortest path: Find the shortest path from s to every node.

Def: The distance from u to v is the length of the shortest path from u
to v, denoted as &(u, v)

9/@ 23

14\(18 5(s,t)= 9+23+2+16
= 50.

30

15 1

Key property of shortest path: Subpath optimality

S~a_-

Lemma: Let P = (s, ...,u,..,t) be the shortest path from s to t. Then
the subpaths (s, ...,u) and (u,..t) must also be shortest paths from s to
u and from u to t, respectively.

Pf: (by contradiction)

. Suppose the subpath (s, ..., u) is not the shortest, and there is
another path P’ from s to u that is shorter.

. Then we can replace the subpath from s to u with P’, which will
make the whole path from s to t shorter.

. This contradicts with the fact that the original path from s to ¢t is
the shortest.

. Same proof works for the subpath from u to t.

Note: This holds for any subpath.

Two easy variants

If all weights are 1 (or all weights are equal):
. Can be solved by BFS in ©(V + E) time.

If the graph is a DAG:
. Can use dynamic programming
. By subpath optimality, we have

5(s,v) = min {6(s,u) +w(u,v)}

u,(u,v)EE

NG
—7J

. We can compute all the (s, v)'s in the topological order of nodes.

Shortest path in a DAG

DAG-Shortest-Path (G, s)
topologically sort the vertices of G
reverse every edge of G
for each vertex veEV
v.d <
v.p < nil
s.d <0
for each vertex v in topological order
for each vertex u € Adj[v]
if v.d >u.d +w(u,v) then
v.d «u.d+w(u,v) Relax (u,v)
V.p < U

A nice trick to avoid reversing all edges: @\®

. v.d starts with .

. Incoming edges do not have to be evaluated together. O\//

. We are OK as long as all edges have been “relaxed".
- Here "relax” means this edge no longer needs to be considered.

Shortest path in a DAG: Final algorithm

DAG-Shortest-Path (G, s)
topologically sort the vertices of G
for each vertex veEV
V.d <
v.p < nil
s.d <0
for each vertex u in topological order
for each vertex v € Adj[u]
if v.d >u.d +w(u,v) then
v.d «u.d+w(u,v) Relax (u,v)
V.p U

Running time: ©(V + E)

Note:

. Can find the actual shortest path by tracing the parent pointers.

. If we just want to find the shortest path from s fo t, can stop the
algorithm when u = t. But this does not reduce the running time
asymptotically.

Shortest path in a DAG: Example

Longest Paths in a DAG

Start

1hr
time

WV
— critical path

End — task
Modified recurrence:

. Let d(s,v) be the longest distance from s to v.
d(s,v) = . (mu,%(as{d(s’ u) + w(u,v)}

Q: What if we use nodes to model tasks, and edges to model the
dependencies?

Shortest paths in a graph with cycles and nonnegative weights
Def: 6(s,v) = minimum distance from s to v.

Challenge: The same recurrence holds, but there is no order to compute
the recurrence if the graph has cycles.

Dijkstra's algorithm.
. Maintain a set of explored nodes S for which we have u.d = §(s,u).
Initialize S = {s},s.d =0, v.d = »
. Key lemma: If all edges leaving S are relaxed, then v.d = §(s, v),
where v is the vertex in V — S with the minimum v.d.
- So this v can be added to S, and we then repeat.

minimum v.d among
hodes not in S

Dijkstra's Algorithm

Dijkstra(G,s) :
for each veV do
v.d « ©,v.p < nil, v.color < white

s.d <0
create a min priority queue (on V with d as key
while Q # @

u < Extract-Min (Q)
u.color <« black
for each v € Adj[u] do
if v.color = white and u.d + w(u,v) <v.d then
V.p U
v.d «u.d+w(uv)
Decrease-Key (Q,v,v.d)

Running time: O(E logV)
. Very similar to Prim's algorithm with only one key difference

. Try to run both algorithms on the same graph to see the
difference.

10

Dijkstra's Algorithm: Example

Note: All the shortest paths found by Dijkstra's algorithm form
a tree (shortest-path tree).

1

Dijkstra's Algorithm: Correctness

Lemma. If u.d = &(s,u) for all u € S, and all edges leaving S are relaxed, we
have v.d = §(s,v), where v is the vertex with the minimum v.d inV —S.

Pf. (by contradiction)
- Suppose v.d # §(s,v)
- Since v.d starts with o, and whenever it's updated, we must have found
a path with distance v.d. So we always have v.d > 6(s, v).
- Thus it can only be v.d > §(s, v).
. Consider the shortest path P from s to v.
- Suppose x — y is the first edge on P
that takes P out of S.
- Since x € S, we have x.d = §(s, x).
- The edge x — y has been relaxed, so y.d < x.d + w(x, y).
- P is shortest path, its subpath (s, ..., x,y) must also be shortest, so
x.d+w(x,y) =38(s,y).
- 6(s,y) < 6(s,v), assuming nonnegative weights.
- Thus, v.d > §(s,v) = 6(s,y) = x.d + w(x,y) = y.d, contradicting with the
fact that v.d is the smallest inV —S.

12

Shortest paths on graphs with negative-weight edges

Shortest path problem. Given a directed graph G = (V,E), with edge
weights that may be both positive and negative, find shortest path
from node s to every other node.

Applications.
.- Road network: scenic roads
. Financial transactions: edges may be have positive or negative costs

(profit)

10
9/@

13

Shortest Paths with Negative Weights: Failed Attempts

Dijkstra. Can fail if negative edge costs.

14

Shortest Paths: Negative Weight Cycles

AT
o

e”@/\v

w(C) <0

Negative weight cycle.

Note. The shortest path problem is not be well defined if there are
negative-weight cycles in the graph. So will assume no negative cycles.

15

Dynamic Programming

Def. v.d[i] = length of shortest path from s to v using up to i edges.

Recurrence:
- Suppose (u,v) is the last edge of the shortest path from s fo v. The
subpath from s to u must also be shortest, which consists of at
most i — 1 edges, followed by (u, v).

dli] = min {v.d[i —1] + w(u,v)}

u,(u,v)EE

v.d[0] = o
s.d[i] =0, forall i

Remark. v.d[n — 1] = length of the shortest path from s to v, since no
shortest path can have n edges or more.

16

Dynamic Programming: Implementation

Shortest-Path (G,s) :
for each node vEV do
for i< 0 to n—1 do

v.d[i] « o
for i< 0 to n—1 do
s.d[i] < 0

for i1 ton—-1
for each edge (u,v) €EE
if w.d[i—1]+w(u,v) <v.d[i] then
v.d[i] « u.d[i — 1] + w(u,v)
v.pli] «u

Analysis. O(VE) time, ©(V?) space.

17

Improvements and simplifications

Improvements.
. Use only one v.d instead of v.d][i]
- After the i-th iteration, v.d < v.d]i]
- This may make things even better (faster convergence).
. Use only one v.p instead of v.pl[i]

- v.p is always the last stop to v on the shortest path found so far.

. No need to check edges of the form (u, v) unless u.d changed
In previous iteration.
. If no v.d has changed in an iteration, terminate the algorithm.

18

Bellman-Ford: Efficient Implementation

Bellman-Ford (G,s) :
for each node vEV
v.d « ©,v.p < nil
s.d <0
for i<1 ton—-1
for each node u €V
if u.d is changed in previous iteration then
for each v € Adj[u]
if u.d+w(,v) <v.d then
v.d «u.d+w(u,v)
V.p < U
if no v.d changed in this iteration then terminate

Analysis.

. O(VE) time in the worst case, but can be much faster in practice
- O(V) space.

Remark:
. Can be run in parallel.
. Used on massive graphs (even if no negative edges).
. Can also detect whether there is a negative cycle (see textbook).

19

All-Pairs Shortest Paths

Input:
. Directed graph G = (V,E).
. Weight w(e) = length of edge e.

Output:
. 6(u,v), for all pairs of nodes u, v.
. A data structure from which the shortest path from u to v can be
extracted efficiently, for any pair of nodes u, v
- Note: Storing all shortest paths explicitly for all pairs requires
0(V3) space.

Graph representation
. Assume adjacency matrix
- w(u,v) can be extracted in 0(1) time.
-w(u,u) =0, w(u,v) = o« if there is no edge from u to v.
. If the graph is stored in adjacency lists format, can convert to
adjacency matrix in 0(V?%) time.

20

Using previous algorithms

When there are no negative cost edges

- Apply Dijkstra’'s algorithm to each vertex (as the source).

. Recall that Dijkstra algorithm runs in O(E logV)
. This gives an O(VE logV)-time algorithm
. If the graph is dense, this is 0(n3logn).

When negative-weight edges are present
. Run the Bellman-Ford algorithm from each vertex.
. O(VZE) time, which is 0(n*) for dense graphs.

21

Dynamic Programming: Solution 1

Def: di” = length of the shortest path from i to j that contains at

most m edges.
. Use D™ to denote the matrix [dl.(]’.”) :

Recurrence: (Essen‘riall?l the same as in Bellman-Ford)
d™ = min d"V + w(k,)}

ij 1<k<n

1 ..
di(j) =w(i,j)
Goal: D™~V since no shortest path can have n edges or more.

Slow-All-Pairs-Shortest-Paths (() :
dlg]-l) =w(i,j) for all 1<i,j<n
for m«2 ton—1

let D™ be a new nXn matrix

for i«<1 ton
for j«<1 ton

dg.n) «— o0
for k<1 to n
if diy U +wk) <d” then dfY «dy " +w(k,))

return D™D

22

Example
alysis:

An

. 0(n*) time

. 0(n?) space, can be improved to

0(n?)

.n__rn.r..l_ﬁ_,._“_

] = Uh O D

on S o —
R

12

T88°
g & gree
% g S B
RE g8
Ll

7.(1)

4
—1
3
-2
0

|

—

bl

~]
.
o — O D
ﬁJd—._“u_:_...ql_
|

1.3

23

Dynamic Programming: Solution 2

Observation:
. To compute d() instead of looking at the last stop before j, we

look at the mlddle point.
. This can cut down the problem size by half.

New recurrence:
dgs) = min {d()+ d(s)}

1<k<n
Algorithm:
. We can calculate D™, D@ p@) p®)
. Each matrix takes 0(n®) time, total time 0(n3logn).

Q: We will overshoot D(*~1D?

A: It's OK. Since D), n’ > n — 1 has the shortest paths with up to n’
edges, it will not miss any shortest path with up fo n — 1 edges.
. Actudlly, D™ = p(»=1) for any n’ > n — 1, since no shortest path has
more than n — 1 edges.

24

Dynamic Programming: Solution 3 (Floyd-Warshall)

Def: di(]’.“) = length of the shortest path from i to j that such that all
intermediate vertices on the path (if any) are in the set {1,2, ..., k}.

di¥ = INF (no path)
. 5.6 B
PANE
ARG 4 =9 (526)
&
AN T d¥=8 (5326)
1_11 2 4 *\6 !
: = did=6 (54.16)

Initially: d;’ = w(i,)

Goal: DM

25

Recurrence

k o (k=1) (k-1 k-1
di(j):mm{di(j)'di(k)+dl(cj 1

To compute di(]’.‘) , there are two cases:
. Case 1: k is not a vertex on the shortest path from i to j, then the
path uses only vertices in {1,2, ...,k — 1}.
. Case 2: k is an intermediate node on the shortest path from i to j,
then the path can be divided into a subpath from i fo k and a

subpath from k to j. Both subpaths use only vertices in {1,2, ...,k — 1}

26

The Floyd-Warshall Algorithm

Floyd-Warshall (G) :
di) =w(i,j) for all 1<ij<n
for k<1 ton
let D® be a new nXxn matrix

for i<1 ton
for j«<1 ton

. (k—1) (k—1) (k—1)
if dik() +d(kj | <d(ij) then
k k-1 k—1
dij < dy +dkj
else
(k) (k—1)
dij~ < dy

return D™
Analysis:
. 0(n®) time
. 0(n®) space, but can be improved to 0(n?)

Surprising discovery: If we just drop all the superscripts, i.e., the
algorithm just uses one n x n array D, the algorithm still works! (why?)

The Floyd-Warshall Algorithm: Final Version

Floyd-Warshall (G) :
dij =w(i,j) and intermed[i,j| <« 0 for all 1<i,j<n
for k<1 ton
for i<1 ton
for j«<1 ton
if dj +dy; <d;; then
dij < dip + dy;
intermed|i,j] « k

return D

Analysis:
. 0(n3) time
. 0(n?) space

The intermed]i, j] array records one intermediate node on the shortest
path from i fo j.

. It isnil if the shortest path does not pass any intermediate nodes.

28

Extracting Shortest Paths

Path (i,)) :

if intermed]|i,j] = nil then
output (i,j)

else
Path (i, intermed|i, j])
Path (intermed|i,j],j)

Example: Path(2,3) intermed[2,3] =6

/\

Path (2, 6) intermed[2,6] = 5 Path (6, 3) intermed[6,3] = 4

O /\

Path(2,5) Path(5,6) Path (6,4)

| | |

Output (2,5) Output (5,6) Output (6,4)

Running time: O(length of the shortest path)

Path(4,3)

|

Output (4, 3)

29

