
Lecture 16: Minimum Spanning Trees

Minimum Spanning Tree

Minimum spanning tree. Given a connected undirected graph 𝐺 =

(𝑉, 𝐸) with real-valued edge weights 𝑤(𝑒), an MST is a subset of the

edges 𝑇 ⊆ 𝐸 such that 𝑇 is a tree that connects all nodes whose sum of

edge weights is minimized.

Applications: telephone, electrical, hydraulic, TV cable, computer, road

2

5

23

10

21

14

24

16

6

4

18
9

7

11
8

5

6

4

9

7

11
8

𝐺 = (𝑉, 𝐸) 𝑇,𝑒𝑇 𝑤(𝑒) = 50

Prim's Algorithm: Idea

Prim's algorithm

 Initialize 𝑆 = {any one node}.

 Add min cost edge 𝑒 = (𝑢, 𝑣) with 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑉 − 𝑆 to 𝑇.

 Add 𝑣 to 𝑆.

 Repeat until 𝑆 = 𝑉

3

𝑆

Prim’s Algorithm: Example

4

Prim’s Algorithm: Example (continued)

5

Prim's Algorithm: Implementation

Implementation.

 Maintain set of explored nodes 𝑆.

 For each unexplored node 𝑣, maintain the cheapest edge from 𝑣 to a

node in 𝑆.

 Maintain all nodes in a priority queue with this cheapest edge as key

6

Prim(𝐺, 𝑟):

for each 𝑣 ∈ 𝑉 do

𝑣. 𝑘𝑒𝑦 ← ∞,𝑣. 𝑝 ← 𝑛𝑖𝑙,𝑣. 𝑐𝑜𝑙𝑜𝑟 ← 𝑤ℎ𝑖𝑡𝑒

𝑟. 𝑘𝑒𝑦 ← 0

create a min priority queue 𝑄 on 𝑉

while 𝑄 ≠ ∅

𝑢 ← Extract-Min(𝑄)

𝑢. 𝑐𝑜𝑙𝑜𝑟 ← 𝑏𝑙𝑎𝑐𝑘

for each 𝑣 ∈ 𝐴𝑑𝑗[𝑢] do

if 𝑣. 𝑐𝑜𝑙𝑜𝑟 = 𝑤ℎ𝑖𝑡𝑒 and 𝑤(𝑢, 𝑣) < 𝑣. 𝑘𝑒𝑦 then

𝑣. 𝑝 ← 𝑢

𝑣. 𝑘𝑒𝑦 ← 𝑤 𝑢, 𝑣

Decrease-Key(𝑄, 𝑣, 𝑤(𝑢, 𝑣))

Note: In the end, the

parent pointers form

the MST.

Running time:

𝑂(𝐸 log𝑉)

Q: Decrease-key

needs the location of

the key in the heap.

How to get that?

Cut Lemma

Simplifying assumption. All edge weights are distinct.

Cut lemma. Let 𝑆 be any subset of nodes, and let 𝑒 be the min cost

edge with exactly one endpoint in 𝑆. Then any MST must contains 𝑒.

Correctness of Prim’s Algorithm: Apply the lemma between the black

and white vertices.

Pf. (exchange argument)

 Let 𝑇∗ be any MST.

 Let 𝑒 = 𝑢, 𝑣 and suppose 𝑒 does

not belong to 𝑇∗.

 There is a path in 𝑇∗ that goes from 𝑢 to 𝑣,

which must cross the cut using some other

edge 𝑒′ with 𝑤 𝑒′ > 𝑤(𝑒).

 If we replace 𝑒′ with 𝑒 in 𝑇∗, then 𝑇∗

is still a spanning tree, but the total

cost will be lower, which contradicts

with the fact that 𝑇∗ is an MST.

7

𝑆

e is in the MST

𝑒

𝑒’

𝑇∗

𝑒
𝑆

Uniqueness of MST

Theorem: The MST is unique.

Pf:

 Let 𝑇∗ be an MST.

 Consider any edge 𝑒 ∈ 𝑇∗

 Removing 𝑒 from 𝑇∗ breaks 𝑇∗

into two parts 𝑆 and 𝑉 − 𝑆

 𝑒 must be the min cost edge crossing the cut 𝑆, 𝑉 − 𝑆 . (If not, we

can replace 𝑒 with the min cost edge and improve the MST.)

 Applying the cut lemma on 𝑆, we know that any MST must contain 𝑒.

 Applying the above argument to every edge of 𝑇∗, we have

– There are 𝑉 − 1 edges in the graph such that any MST must

contain all of them.

– Any spanning tree must have exactly 𝑉 − 1 edges.

– So, any MST must have those 𝑉 − 1 edges, i.e., the same as 𝑇∗.

Note: If there are edges with equal weights, then the MST may not be

unique.

8

5

6

4

9

7

11
8

Kruskal's Algorithm: Idea

Kruskal's algorithm.

 Starts with an empty tree 𝑇

 Consider edges in ascending order of weight.

 Case 1: If adding 𝑒 to 𝑇 creates a cycle, discard 𝑒.

 Case 2: Otherwise, insert 𝑒 = (𝑢, 𝑣) into 𝑇 according to cut lemma

9

Case 1

v

u

Case 2

𝑒

𝑒
𝑆

Kruskal’s Algorithm: Example

10

Kruskal’s Algorithm: Example (continued)

11

Kruskal’s Algorithm: Example (continued)

12

Kruskal's Algorithm: Implementation

Key question: How to check whether adding 𝑒 to 𝑇 will create a cycle?

 Use DFS?

– Would result in 𝑂 𝐸 ⋅ 𝑉 total time.

 Can we do the checking in 𝑂(log𝑉) time?

Observations:

 The actual structure of each component of 𝑇 does not matter.

– Each component can be considered as a set of nodes.

 After an edge is added, two sets “union” together.

Need such a “union-find” data structure:

 Maintain a collection of sets to support the following two

operations:

 Find-Set(𝑢): For a given node 𝑢, find which set this node

belongs to.

 Union(𝑢, 𝑣): For two given nodes 𝑢 and 𝑣, merge the two sets

containing 𝑢 and 𝑣 together.

13

The union-find data structure

Representing each set as a tree:

 The tree in the union-find data structure may not be the same as

that in the partial MST!

 The root of the tree is the representative node of all nodes in that

tree (i.e., use the root’s ID as the unique ID of the set).

 Every node (except the root), has a pointer pointing to its parent.

– The root has a parent pointer to itself.

– No child pointers (unlike BST), so a node can have many children.

14

Make-Set(x) and Find-Set(x)

Create-Set(x):

Find-Set(x):

Running time proportional to the height of the tree.

15

Make-Set(𝑥):

𝑥. 𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑥

𝑥. ℎ𝑒𝑖𝑔ℎ𝑡 ← 0

Find-Set(𝑥):

while 𝑥! = 𝑥. 𝑝𝑎𝑟𝑒𝑛𝑡 do

𝑥 ← 𝑥. 𝑝𝑎𝑟𝑒𝑛𝑡

return 𝑥

Union(x, y)

Assumption: 𝑥 and 𝑦 are the roots of the their trees.

 If not, do Find-Set first

Idea: Set 𝑥. 𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑦

16

But, what if…

Solution (union by height):

 When we union two trees together,

we always make the root of the taller

tree the parent of shorter tree.

 Need to maintain the height of each

tree

17

Union(𝑥, 𝑦):

𝑎 ← Find-Set(𝑥)

𝑏 ← Find-Set(𝑦)

if 𝑎. ℎ𝑒𝑖𝑔ℎ𝑡 ≤ 𝑏. ℎ𝑒𝑖𝑔ℎ𝑡 then

if 𝑎. ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑏. ℎ𝑒𝑖𝑔ℎ𝑡 then

𝑏. ℎ𝑒𝑖𝑔ℎ𝑡 ← 𝑏. ℎ𝑒𝑖𝑔ℎ𝑡 + 1

𝑎. 𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑏

else

𝑏. 𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑎

The union-find data structure: Analysis

Theorem: The running time of Find-Set and Union is 𝑂(log 𝑛)

Pf: We will show (by induction) that for any tree with height ℎ, its size

is at least 2ℎ.

 At beginning, ℎ(𝑥) = 0, and 𝑠𝑖𝑧𝑒(𝑥) = 1. We have 1 ≥ 20.

 Suppose the assumption is true for any 𝑥 and 𝑦 before Union(𝑥, 𝑦).

Let the size and height of the resulting tree be 𝑠𝑖𝑧𝑒(𝑥′), and ℎ(𝑥′).

– Case 1: ℎ(𝑥) < ℎ(𝑦), we have

𝑠𝑖𝑧𝑒 𝑥′ = 𝑠𝑖𝑧𝑒 𝑥 + 𝑠𝑖𝑧𝑒 𝑦 ≥ 2ℎ 𝑥 + 2ℎ 𝑦 ≥ 2ℎ 𝑦 = 2ℎ(𝑥
′).

– Case 2: ℎ(𝑥) = ℎ(𝑦), we have

𝑠𝑖𝑧𝑒 𝑥′ = 𝑠𝑖𝑧𝑒 𝑥 + 𝑠𝑖𝑧𝑒 𝑦 ≥ 2ℎ 𝑥 + 2ℎ 𝑦 = 2ℎ 𝑦 +1 = 2ℎ(𝑥
′).

– Case 3: ℎ(𝑥) > ℎ(𝑦), similar to case 1.

18

Path Compression

Idea:

 We have visited a number of nodes after Find-Set(𝑥), and have

reached the root 𝑟.

 We already know that these nodes belong to the set represented by 𝑟.

 Why not just set the parent pointers of these nodes to 𝑟 directly?

– Future operations will be faster!

Analysis:

 This results in a running time that is practically a constant (but

theoretically not).

 See textbook for details (not required).

19

Kruskal’s Algorithm

Running time:

 𝑂(𝐸 log𝐸 + 𝐸 log𝑉) = 𝑂(𝐸 log𝑉)

Note: If edges are already sorted and we use path compression, then

the running time is close to 𝑂(𝐸).

Current best MST algorithm:

 An algorithm by Seth and Ramachandran (2002) has been shown to

be optimal, but its running time is still unknown…

20

MST-Kruskal(𝐺):

for each vertex 𝑣 ∈ 𝑉

Make-Set(𝒗)

sort the edges of 𝐺 into increasing order by weight

for each edge (𝑢, 𝑣) ∈ 𝐸 taken in the above order

if Find-Set(𝑢)≠ Find-Set(𝑣) then

output edge (𝑢, 𝑣)

Union(𝑢, 𝑣)

Removing the distinct weight assumption

Idea: Use a tie-breaker to make equal weights look different

Why does this work?

 Imagine that the weight of 𝑒𝑖 is 𝑤 𝑒𝑖 + 𝑖 ⋅ 𝛿, where 𝛿 is a

sufficiently small number

 Running the algorithm with the above tie-breaker is the same as

running the original algorithm on the modified weights

 The MST on the modified weights must also be an MST on the

original weights, for 𝛿 small enough

Note: In fact, even if we don’t use a tie breaker, both Prim’s and

Kruskal’s algorithm are still correct. But the proof of correctness is

more complicated (see textbook for details).

21

boolean less(𝑖, 𝑗)
if 𝑤(𝑒𝑖) < 𝑤(𝑒𝑗) then return true

else if 𝑤 𝑒𝑖 > 𝑤(𝑒𝑗) then return false

else if 𝑖 < 𝑗 then return true

