Lecture 16: Minimum Spanning Trees

Minimum Spanning Tree

Minimum spanning tree. Given a connected undirected graph G =

(V,E) with real-valued edge weights w(e), an MST is a subset of the
edges T € E such that T is a tree that connects all nodes whose sum of
edge weights is minimized.

6 | %u / P~p—1
P b

G = (V,E) T,%,.. w(e) = 50

Applications: telephone, electrical, hydraulic, TV cable, computer, road

Prim’s Algorithm: Idea

Prim's algorithm
. Initialize S = {any one node}.
. Add min cost edge e = (w,v) withueSandveV -StoT.
. AddvtoS.
. Repeat until S =V

Prim's Algorithm: Example

(b)

(d)

1)

Prim's Algorithm: Example (continued)

(H)

(h)

Prim's Algorithm: Implementation

Implementation.
. Maintain set of explored nodes S.
. For each unexplored node v, maintain the cheapest edge from v fo a
hode in S.
. Maintain all nodes in a priority queue with this cheapest edge as key

Prim(G,r) : Note: In the end, the
for each vEV do parent pointers form
v.key < o, v.p « nil, v.color < white the MST
r.key < 0 '
create a min priority queue (Q on I Running time:
while Q # 0
El
u < Extract-Min (Q) O(ElogV)
u.color < black Q: Decr'ease—key

for each v € Adj[u] do

if v.color = white and w(u,v) < v.key then needs The location of
v.p —u the key in the heap.

v.key « w(u,v) How to get that?
Decrease-Key (Q,v,w(u,v))

Cut Lemma
Simplifying assumption. All edge weights are distinct.

Cut lemma. Let S be any subset of nodes, and let e be the min cost
edge with exactly one endpoint in S. Then any MST must contains e.

Correctness of Prim's Algorithm: Apply the lemma between the black
and white vertices.

Pf. (exchange argument)

. Let T* be any MST. €

. Let e = (u,v) and suppose e does
hot belong to T*.

. There is a path in T* that goes from u to v, e is in the MST
which must cross the cut using some other
edge e’ with w(e') > w(e).

. If we replace e’ withe inT*, thenT* S
is still a spanning tree, but the total
cost will be lower, which contradicts
with the fact that T is an MST. T

Unigueness of MST

Theorem: The MST is unique. e /3
Pf: C(A 5
. Let T* be an MST. \?\ 5 /C<
Consider any edge e € T* 3 o— 1
Removing e from T* breaks T* d 78)

intfo fwo parts Sand V —§

e must be the min cost edge crossing the cut (S,V —S). (If not, we

can replace e with the min cost edge and improve the MST.)

Applying the cut lemma on S, we know that any MST must contain e.

Applying the above argument to every edge of T, we have

- There are V — 1 edges in the graph such that any MST must
contain all of them.

- Any spanning tree must have exactly V — 1 edges.

- So, any MST must have those IV — 1 edges, i.e., the same as T".

Note: If there are edges with equal weights, then the MST may not be
unique.

Kruskal's Algorithm: Idea

Kruskal's algorithm.
Starts with an empty tree T
Consider edges in ascending order of weight.
Case 1: If adding e to T creates a cycle, discard e.
Case 2: Otherwise, insert e = (u,v) into T according to cut lemma

Case 1 Case 2

Kruskal's Algorithm: Example

10

Kruskal's Algorithm: Example (continued)

Kruskal's Algorithm: Example (continued)

Kruskal's Algorithm: Implementation

Key question: How to check whether adding e to T will create a cycle?
. Use DFS?
- Would result in O(E - V) total time.
. Can we do the checking in O(logV) time?

Observations:
The actual structure of each component of T does not matter.
- Each component can be considered as a set of nodes.
After an edge is added, two sets "union” together.

Need such a "union-find" data structure:
Maintain a collection of sets to support the following two
operations:
Find-Set (u): For a given node u, find which set this node
belongs to.
Union(u, v): For two given nodes u and v, merge the two sets
containing u and v together.

13

The union-find data structure

Representing each set as a tree:
. The free in the union-find data structure may not be the same as
that in the partial MST!
. The root of the tree is the representative node of all nodes in that
tree (i.e., use the root's ID as the unique ID of the set).
. Every node (except the root), has a pointer pointing to its parent.
- The root has a parent pointer to itself.
- No child pointers (unlike BST), so a node can have many children.

14

Make-Set(x) and Find-Set(x)

Create-Set(x): Make-Set (x) :
x.parent «— X
x.height < 0
Find-Set(x):

Find-Set(x) :

while x! = x.parent do
X < x.parent

return x

Running time proportional to the height of the tree.

15

Union(x, y)

Assumption: x and y are the roots of the their trees.
. If not, do Find-Set first

Idea: Set x.parent « vy

16

But, what if...

e /
O .
@f@ﬁ-@{Q@* § -

Solution (union by height):

Union(x,y) :

. When we union two trees together, a « Find-Set (x)
we always make the root of the taller b < Find-Set(y)
tree the parent of shorter tree. L @Bl = b luenglit (2

if a.height = b.height then
b.height < b.height + 1
Tree a.parent < b
else
b.parent < a

. Need to maintain the height of each

17

The union-find data structure: Analysis

Theorem: The running time of Find-Set and Union is O(logn)

Pf: We will show (by induction) that for any tree with height h, its size
is at least 2",
. At beginning, h(x) = 0, and size(x) = 1. We have 1 > 2°.
. Suppose the assumption is true for any x and y before Union(x, y).
Let the size and height of the resulting tree be size(x"), and h(x").
- Case 1: h(x) < h(y), we have
size(x") = size(x) + size(y) = 20 4 2h() > 2h(¥) = Ph(x),
- Case 2: h(x) = h(y), we have
size(x") = size(x) + size(y) = 203 4 2h() = h(M+1 = Ph(xH),
- Case 3: h(x) > h(y), similar to case 1.

18

Path Compression e

T ~,
. g
ey
/ ll/‘_‘\\/ lll," \\
4 —
@ O NNAY.
F A r— ! I
"/_\'-I-X.u'?- \\ A rr_}_{;' .-'III \\ l,.";l \\\\
o U A Find-Set(x) ~ ~ /" [/ \ /
~ T\ =~ A | A
| \l / Voo \\ ‘—«f / Voo '
" T / \"\ / A [\ i \‘\ —\,-"E \
Is)E) ."' Y \\.n'—\. I."I Y ,-" \
-~ ? l\:"- - by l|lll \\. I'Ill \“ |'l \\ |||I I \“
o~ Foy, / Yol h ! LY M
it \Wi \ e
| \ f | S
."'l ' N
."'Il \\ LA
/ \
! A

Idea:
. We have visited a number of nodes after Find-Set(x), and have
reached the root r.
. We already know that these nodes belong to the set represented by r.
. Why not just set the parent pointers of these nodes to r directly?
- Future operations will be faster!

Analysis:
. This results in a running time that is practically a constant (but
theoretically not).
. See textbook for details (not required).

19

Kruskal's Algorithm

MST-Kruskal (G) :
for each vertex veEV
Make-Set (v)
sort the edges of (¢ into increasing order by weight
for each edge (u,v) € E taken in the above order
if Find-Set(u) # Find-Set (v) then
output edge (u,v)
Union (u,v)

Running time:
« O(ElogE + ElogV)=0(ElogV)

Note: If edges are already sorted and we use path compression, then
the running time is close to O(E).

Current best MST algorithm:

. Analgorithm by Seth and Ramachandran (2002) has been shown to
be optimal, but its running time is still unknown...

20

Removing the distinct weight assumption

Idea: Use a tie-breaker to make equal weights look different

boolean less(i,J)
if w(e;) <w(e;) then return true
else if w(e;) >w(e;) then return false
else if i <j then return true

Why does this work?
- Imagine that the weight of e; isw(e;) +i- 6, where § isa
sufficiently small number
. Running the algorithm with the above tie-breaker is the same as
running the original algorithm on the modified weights
. The MST on the modified weights must also be an MST on the
original weights, for § small enough

Note: In fact, even if we don't use a tie breaker, both Prim's and
Kruskal's algorithm are still correct. But the proof of correctness is
more complicated (see textbook for details).

21

