
Lecture 16: Minimum Spanning Trees



Minimum Spanning Tree

Minimum spanning tree.  Given a connected undirected graph 𝐺 =

(𝑉, 𝐸) with real-valued edge weights 𝑤(𝑒), an MST is a subset of the 

edges 𝑇 ⊆ 𝐸 such that 𝑇 is a tree that connects all nodes whose sum of 

edge weights is minimized.

Applications: telephone, electrical, hydraulic, TV cable, computer, road
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𝐺 = (𝑉, 𝐸) 𝑇,𝑒𝑇 𝑤(𝑒) = 50



Prim's Algorithm: Idea

Prim's algorithm

 Initialize 𝑆 = {any one node}.

 Add min cost edge 𝑒 = (𝑢, 𝑣) with 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑉 − 𝑆 to 𝑇.

 Add 𝑣 to 𝑆.

 Repeat until 𝑆 = 𝑉
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Prim’s Algorithm: Example
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Prim’s Algorithm: Example (continued)
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Prim's Algorithm: Implementation

Implementation.

 Maintain set of explored nodes 𝑆.

 For each unexplored node 𝑣, maintain the cheapest edge from 𝑣 to a 

node in 𝑆.

 Maintain all nodes in a priority queue with this cheapest edge as key
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Prim(𝐺, 𝑟):

for each 𝑣 ∈ 𝑉 do

𝑣. 𝑘𝑒𝑦 ← ∞,𝑣. 𝑝 ← 𝑛𝑖𝑙,𝑣. 𝑐𝑜𝑙𝑜𝑟 ← 𝑤ℎ𝑖𝑡𝑒

𝑟. 𝑘𝑒𝑦 ← 0

create a min priority queue 𝑄 on 𝑉

while 𝑄 ≠ ∅

𝑢 ← Extract-Min(𝑄)

𝑢. 𝑐𝑜𝑙𝑜𝑟 ← 𝑏𝑙𝑎𝑐𝑘

for each 𝑣 ∈ 𝐴𝑑𝑗[𝑢] do

if 𝑣. 𝑐𝑜𝑙𝑜𝑟 = 𝑤ℎ𝑖𝑡𝑒 and 𝑤(𝑢, 𝑣) < 𝑣. 𝑘𝑒𝑦 then 

𝑣. 𝑝 ← 𝑢

𝑣. 𝑘𝑒𝑦 ← 𝑤 𝑢, 𝑣

Decrease-Key(𝑄, 𝑣, 𝑤(𝑢, 𝑣))

Note: In the end, the 

parent pointers form 

the MST.

Running time:

𝑂(𝐸 log𝑉)

Q: Decrease-key 

needs the location of 

the key in the heap. 

How to get that?



Cut Lemma

Simplifying assumption.  All edge weights are distinct. 

Cut lemma.  Let 𝑆 be any subset of nodes, and let 𝑒 be the min cost 

edge with exactly one endpoint in 𝑆.  Then any MST must contains 𝑒.

Correctness of Prim’s Algorithm: Apply the lemma between the black 

and white vertices.

Pf. (exchange argument)

 Let 𝑇∗ be any MST.

 Let 𝑒 = 𝑢, 𝑣 and suppose 𝑒 does

not belong to 𝑇∗.

 There is a path in 𝑇∗ that goes from 𝑢 to 𝑣,

which must cross the cut using some other

edge 𝑒′ with 𝑤 𝑒′ > 𝑤(𝑒).

 If we replace 𝑒′ with 𝑒 in 𝑇∗, then 𝑇∗

is still a spanning tree, but the total

cost will be lower, which contradicts 

with the fact that 𝑇∗ is an MST.
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Uniqueness of MST

Theorem: The MST is unique.

Pf: 

 Let 𝑇∗ be an MST.

 Consider any edge 𝑒 ∈ 𝑇∗

 Removing 𝑒 from 𝑇∗ breaks 𝑇∗

into two parts 𝑆 and 𝑉 − 𝑆

 𝑒 must be the min cost edge crossing the cut 𝑆, 𝑉 − 𝑆 . (If not, we 

can replace 𝑒 with the min cost edge and improve the MST.)

 Applying the cut lemma on 𝑆, we know that any MST must contain 𝑒.

 Applying the above argument to every edge of 𝑇∗, we have

– There are 𝑉 − 1 edges in the graph such that any MST must 

contain all of them.

– Any spanning tree must have exactly 𝑉 − 1 edges.

– So, any MST must have those 𝑉 − 1 edges, i.e., the same as 𝑇∗.

Note: If there are edges with equal weights, then the MST may not be 

unique.
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Kruskal's Algorithm: Idea

Kruskal's algorithm.  

 Starts with an empty tree 𝑇

 Consider edges in ascending order of weight.

 Case 1: If adding 𝑒 to 𝑇 creates a cycle, discard 𝑒.

 Case 2: Otherwise, insert 𝑒 = (𝑢, 𝑣) into 𝑇 according to cut lemma
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Kruskal’s Algorithm: Example
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Kruskal’s Algorithm: Example (continued)
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Kruskal’s Algorithm: Example (continued)
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Kruskal's Algorithm: Implementation

Key question: How to check whether adding 𝑒 to 𝑇 will create a cycle?

 Use DFS?

– Would result in 𝑂 𝐸 ⋅ 𝑉 total time.

 Can we do the checking in 𝑂(log𝑉) time?

Observations:

 The actual structure of each component of 𝑇 does not matter.

– Each component can be considered as a set of nodes.

 After an edge is added, two sets “union” together.

Need such a “union-find” data structure:

 Maintain a collection of sets to support the following two 

operations:

 Find-Set(𝑢): For a given node 𝑢, find which set this node 

belongs to.

 Union(𝑢, 𝑣): For two given nodes 𝑢 and 𝑣, merge the two sets 

containing 𝑢 and 𝑣 together.
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The union-find data structure

Representing each set as a tree:

 The tree in the union-find data structure may not be the same as 

that in the partial MST!

 The root of the tree is the representative node of all nodes in that 

tree (i.e., use the root’s ID as the unique ID of the set).

 Every node (except the root), has a pointer pointing to its parent.

– The root has a parent pointer to itself. 

– No child pointers (unlike BST), so a node can have many children.
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Make-Set(x) and Find-Set(x)

Create-Set(x):

Find-Set(x):

Running time proportional to the height of the tree.
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Make-Set(𝑥):

𝑥. 𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑥

𝑥. ℎ𝑒𝑖𝑔ℎ𝑡 ← 0

Find-Set(𝑥):

while 𝑥! = 𝑥. 𝑝𝑎𝑟𝑒𝑛𝑡 do

𝑥 ← 𝑥. 𝑝𝑎𝑟𝑒𝑛𝑡

return 𝑥



Union(x, y)

Assumption: 𝑥 and 𝑦 are the roots of the their trees.

 If not, do Find-Set first

Idea: Set 𝑥. 𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑦
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But, what if…

Solution (union by height):

 When we union two trees together, 

we always make the root of the taller 

tree the parent of shorter tree.

 Need to maintain the height of each 

tree
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Union(𝑥, 𝑦):

𝑎 ← Find-Set(𝑥)

𝑏 ← Find-Set(𝑦)

if 𝑎. ℎ𝑒𝑖𝑔ℎ𝑡 ≤ 𝑏. ℎ𝑒𝑖𝑔ℎ𝑡 then

if 𝑎. ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑏. ℎ𝑒𝑖𝑔ℎ𝑡 then

𝑏. ℎ𝑒𝑖𝑔ℎ𝑡 ← 𝑏. ℎ𝑒𝑖𝑔ℎ𝑡 + 1

𝑎. 𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑏

else

𝑏. 𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑎



The union-find data structure: Analysis

Theorem: The running time of Find-Set and Union is 𝑂(log 𝑛)

Pf: We will show (by induction) that for any tree with height ℎ, its size 

is at least 2ℎ.

 At beginning, ℎ(𝑥) = 0, and 𝑠𝑖𝑧𝑒(𝑥) = 1. We have 1 ≥ 20.

 Suppose the assumption is true for any 𝑥 and 𝑦 before Union(𝑥, 𝑦). 

Let the size and height of the resulting tree be 𝑠𝑖𝑧𝑒(𝑥′), and ℎ(𝑥′).

– Case 1: ℎ(𝑥) < ℎ(𝑦), we have

𝑠𝑖𝑧𝑒 𝑥′ = 𝑠𝑖𝑧𝑒 𝑥 + 𝑠𝑖𝑧𝑒 𝑦 ≥ 2ℎ 𝑥 + 2ℎ 𝑦 ≥ 2ℎ 𝑦 = 2ℎ(𝑥
′).

– Case 2: ℎ(𝑥) = ℎ(𝑦), we have

𝑠𝑖𝑧𝑒 𝑥′ = 𝑠𝑖𝑧𝑒 𝑥 + 𝑠𝑖𝑧𝑒 𝑦 ≥ 2ℎ 𝑥 + 2ℎ 𝑦 = 2ℎ 𝑦 +1 = 2ℎ(𝑥
′).

– Case 3: ℎ(𝑥) > ℎ(𝑦), similar to case 1.
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Path Compression

Idea:

 We have visited a number of nodes after Find-Set(𝑥), and have 

reached the root 𝑟.

 We already know that these nodes belong to the set represented by 𝑟.

 Why not just set the parent pointers of these nodes to 𝑟 directly?

– Future operations will be faster!

Analysis: 

 This results in a running time that is practically a constant (but 

theoretically not).

 See textbook for details (not required).
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Kruskal’s Algorithm

Running time: 

 𝑂(𝐸 log𝐸 + 𝐸 log𝑉) = 𝑂(𝐸 log𝑉)

Note: If edges are already sorted and we use path compression, then 

the running time is close to 𝑂(𝐸).

Current best MST algorithm: 

 An algorithm by Seth and Ramachandran (2002) has been shown to 

be optimal, but its running time is still unknown…

20

MST-Kruskal(𝐺):

for each vertex 𝑣 ∈ 𝑉

Make-Set(𝒗)

sort the edges of 𝐺 into increasing order by weight 

for each edge (𝑢, 𝑣) ∈ 𝐸 taken in the above order

if Find-Set(𝑢)≠ Find-Set(𝑣) then

output edge (𝑢, 𝑣)

Union(𝑢, 𝑣)



Removing the distinct weight assumption

Idea: Use a tie-breaker to make equal weights look different

Why does this work?

 Imagine that the weight of 𝑒𝑖 is 𝑤 𝑒𝑖 + 𝑖 ⋅ 𝛿, where 𝛿 is a 

sufficiently small number

 Running the algorithm with the above tie-breaker is the same as 

running the original algorithm on the modified weights

 The MST on the modified weights must also be an MST on the 

original weights, for 𝛿 small enough

Note: In fact, even if we don’t use a tie breaker, both Prim’s and 

Kruskal’s algorithm are still correct. But the proof of correctness is 

more complicated (see textbook for details).
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boolean less(𝑖, 𝑗)
if 𝑤(𝑒𝑖) < 𝑤(𝑒𝑗) then return true

else if 𝑤 𝑒𝑖 > 𝑤(𝑒𝑗) then return false

else if 𝑖 < 𝑗 then return true


